#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Set3/Hos2 Histone Deacetylase Complex Attenuates cAMP/PKA Signaling to Regulate Morphogenesis and Virulence of


Candida albicans, like other pleiomorphic fungal pathogens, is able to undergo a reversible transition between single yeast-like cells and multicellular filaments. This morphogenetic process has long been considered as a key fungal virulence factor. Here, we identify the evolutionarily conserved Set3/Hos2 histone deacetylase complex (Set3C) as a crucial repressor of the yeast-to-filament transition. Cells lacking core components of the Set3C are able to maintain all developmental phases, but are hypersusceptible to filamentation-inducing signals, because of a hyperactive cAMP/Protein Kinase A signaling pathway. Strikingly, Set3C-mediated control of filamentation is required for virulence in vivo, since set3Δ/Δ cells display strongly attenuated virulence in a mouse model of systemic infection. Importantly, the inhibition of histone deacetylase activity by trichostatin A exclusively phenocopies the absence of a functional Set3C, but not of any other histone deacetylase gene. Hence, our work supports a paradigm for manipulating morphogenesis in C. albicans through alternative antifungal therapeutic strategies.


Vyšlo v časopise: The Set3/Hos2 Histone Deacetylase Complex Attenuates cAMP/PKA Signaling to Regulate Morphogenesis and Virulence of. PLoS Pathog 6(5): e32767. doi:10.1371/journal.ppat.1000889
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1000889

Souhrn

Candida albicans, like other pleiomorphic fungal pathogens, is able to undergo a reversible transition between single yeast-like cells and multicellular filaments. This morphogenetic process has long been considered as a key fungal virulence factor. Here, we identify the evolutionarily conserved Set3/Hos2 histone deacetylase complex (Set3C) as a crucial repressor of the yeast-to-filament transition. Cells lacking core components of the Set3C are able to maintain all developmental phases, but are hypersusceptible to filamentation-inducing signals, because of a hyperactive cAMP/Protein Kinase A signaling pathway. Strikingly, Set3C-mediated control of filamentation is required for virulence in vivo, since set3Δ/Δ cells display strongly attenuated virulence in a mouse model of systemic infection. Importantly, the inhibition of histone deacetylase activity by trichostatin A exclusively phenocopies the absence of a functional Set3C, but not of any other histone deacetylase gene. Hence, our work supports a paradigm for manipulating morphogenesis in C. albicans through alternative antifungal therapeutic strategies.


Zdroje

1. OddsFC

1988 Candida and Candidosis: A Review and Bibliography. London Baillière Tindall

2. RooneyPJ

KleinBS

2002 Linking fungal morphogenesis with virulence. Cell Microbiol 4 127 137

3. GowNA

BrownAJ

OddsFC

2002 Fungal morphogenesis and host invasion. Curr Opin Microbiol 5 366 371

4. BrownAJ

GowNA

1999 Regulatory networks controlling Candida albicans morphogenesis. Trends Microbiol 7 333 338

5. ErnstJF

2000 Transcription factors in Candida albicans - environmental control of morphogenesis. Microbiology 146 (Pt8) 1763 1774

6. WhitewayM

BachewichC

2007 Morphogenesis in Candida albicans. Annu Rev Microbiol 61 529 553

7. LiuH

2001 Transcriptional control of dimorphism in Candida albicans. Curr Opin Microbiol 4 728 735

8. LiuH

KohlerJ

FinkGR

1994 Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 266 1723 1726

9. LoHJ

KohlerJR

DiDomenicoB

LoebenbergD

CacciapuotiA

1997 Nonfilamentous C. albicans mutants are avirulent. Cell 90 939 949

10. StoldtVR

SonnebornA

LeukerCE

ErnstJF

1997 Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. Embo J 16 1982 1991

11. BraunBR

JohnsonAD

1997 Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277 105 109

12. BraunBR

KadoshD

JohnsonAD

2001 NRG1, a repressor of filamentous growth in C.albicans, is down-regulated during filament induction. EMBO J 20 4753 4761

13. KadoshD

JohnsonAD

2001 Rfg1, a protein related to the Saccharomyces cerevisiae hypoxic regulator Rox1, controls filamentous growth and virulence in Candida albicans. Mol Cell Biol 21 2496 2505

14. MuradAM

LengP

StraffonM

WishartJ

MacaskillS

2001 NRG1 represses yeast-hypha morphogenesis and hypha-specific gene expression in Candida albicans. EMBO J 20 4742 4752

15. SlutskyB

StaebellM

AndersonJ

RisenL

PfallerM

1987 “White-opaque transition”: a second high-frequency switching system in Candida albicans. J Bacteriol 169 189 197

16. MillerMG

JohnsonAD

2002 White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell 110 293 302

17. KvaalC

LachkeSA

SrikanthaT

DanielsK

McCoyJ

1999 Misexpression of the opaque-phase-specific gene PEP1 (SAP1) in the white phase of Candida albicans confers increased virulence in a mouse model of cutaneous infection. Infect Immun 67 6652 6662

18. KvaalCA

SrikanthaT

SollDR

1997 Misexpression of the white-phase-specific gene WH11 in the opaque phase of Candida albicans affects switching and virulence. Infect Immun 65 4468 4475

19. HullCM

JohnsonAD

1999 Identification of a mating type-like locus in the asexual pathogenic yeast Candida albicans. Science 285 1271 1275

20. HuangG

WangH

ChouS

NieX

ChenJ

2006 Bistable expression of WOR1, a master regulator of white-opaque switching in Candida albicans. Proc Natl Acad Sci U S A 103 12813 12818

21. ZordanRE

GalgoczyDJ

JohnsonAD

2006 Epigenetic properties of white-opaque switching in Candida albicans are based on a self-sustaining transcriptional feedback loop. Proc Natl Acad Sci U S A 103 12807 12812

22. ZordanRE

MillerMG

GalgoczyDJ

TuchBB

JohnsonAD

2007 Interlocking transcriptional feedback loops control white-opaque switching in Candida albicans. PLoS Biol 5 e256

23. SonnebornA

TebarthB

ErnstJF

1999 Control of white-opaque phenotypic switching in Candida albicans by the Efg1p morphogenetic regulator. Infect Immun 67 4655 4660

24. SrikanthaT

TsaiLK

DanielsK

SollDR

2000 EFG1 null mutants of Candida albicans switch but cannot express the complete phenotype of white-phase budding cells. J Bacteriol 182 1580 1591

25. HniszD

SchwarzmullerT

KuchlerK

2009 Transcriptional loops meet chromatin: a dual-layer network controls white-opaque switching in Candida albicans. Mol Microbiol 74 1 15

26. PijnappelWW

SchaftD

RoguevA

ShevchenkoA

TekotteH

2001 The S. cerevisiae SET3 complex includes two histone deacetylases, Hos2 and Hst1, and is a meiotic-specific repressor of the sporulation gene program. Genes Dev 15 2991 3004

27. MouZ

KennyAE

CurcioMJ

2006 Hos2 and Set3 promote integration of Ty1 retrotransposons at tRNA genes in Saccharomyces cerevisiae. Genetics 172 2157 2167

28. CohenTJ

MalloryMJ

StrichR

YaoTP

2008 Hos2p/Set3p deacetylase complex signals secretory stress through the Mpk1p cell integrity pathway. Eukaryot Cell 7 1191 1199

29. SudberyP

GowN

BermanJ

2004 The distinct morphogenic states of Candida albicans. Trends Microbiol 12 317 324

30. BirseCE

IrwinMY

FonziWA

SypherdPS

1993 Cloning and characterization of ECE1, a gene expressed in association with cell elongation of the dimorphic pathogen Candida albicans. Infect Immun 61 3648 3655

31. UhlMA

BieryM

CraigN

JohnsonAD

2003 Haploinsufficiency-based large-scale forward genetic analysis of filamentous growth in the diploid human fungal pathogen C.albicans. EMBO J 22 2668 2678

32. YoshidaM

KijimaM

AkitaM

BeppuT

1990 Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem 265 17174 17179

33. HwangCS

OhJH

HuhWK

YimHS

KangSO

2003 Ssn6, an important factor of morphological conversion and virulence in Candida albicans. Mol Microbiol 47 1029 1043

34. TebarthB

DoedtT

KrishnamurthyS

WeideM

MonterolaF

2003 Adaptation of the Efg1p morphogenetic pathway in Candida albicans by negative autoregulation and PKA-dependent repression of the EFG1 gene. J Mol Biol 329 949 962

35. RamanSB

NguyenMH

ZhangZ

ChengS

JiaHY

2006 Candida albicans SET1 encodes a histone 3 lysine 4 methyltransferase that contributes to the pathogenesis of invasive candidiasis. Mol Microbiol 60 697 709

36. WatsonAD

EdmondsonDG

BoneJR

MukaiY

YuY

2000 Ssn6-Tup1 interacts with class I histone deacetylases required for repression. Genes Dev 14 2737 2744

37. SharkeyLL

McNemarMD

Saporito-IrwinSM

SypherdPS

FonziWA

1999 HWP1 functions in the morphological development of Candida albicans downstream of EFG1, TUP1, and RBF1. J Bacteriol 181 5273 5279

38. BraunBR

JohnsonAD

2000 TUP1, CPH1 and EFG1 make independent contributions to filamentation in Candida albicans. Genetics 155 57 67

39. BraunBR

HeadWS

WangMX

JohnsonAD

2000 Identification and characterization of TUP1-regulated genes in Candida albicans. Genetics 156 31 44

40. MartchenkoM

AlarcoAM

HarcusD

WhitewayM

2004 Superoxide dismutases in Candida albicans: transcriptional regulation and functional characterization of the hyphal-induced SOD5 gene. Mol Biol Cell 15 456 467

41. KaiserC

MichaelisS

MitchellA

1994 Methods in Yeast Genetics. A Laboratory Course Manual. New York Cold Spring Harbor Laboratory Press

42. BiswasS

Van DijckP

DattaA

2007 Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicans. Microbiol Mol Biol Rev 71 348 376

43. KumamotoCA

2005 A contact-activated kinase signals Candida albicans invasive growth and biofilm development. Proc Natl Acad Sci U S A 102 5576 5581

44. TheveleinJM

de WindeJH

1999 Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 33 904 918

45. UnoI

MatsumotoK

AdachiK

IshikawaT

1983 Genetic and biochemical evidence that trehalase is a substrate of cAMP-dependent protein kinase in yeast. J Biol Chem 258 10867 10872

46. CastillaR

PasseronS

CantoreML

1998 N-acetyl-D-glucosamine induces germination in Candida albicans through a mechanism sensitive to inhibitors of cAMP-dependent protein kinase. Cell Signal 10 713 719

47. BockmuhlDP

KrishnamurthyS

GeradsM

SonnebornA

ErnstJF

2001 Distinct and redundant roles of the two protein kinase A isoforms Tpk1p and Tpk2p in morphogenesis and growth of Candida albicans. Mol Microbiol 42 1243 1257

48. BedellGW

SollDR

1979 Effects of low concentrations of zinc on the growth and dimorphism of Candida albicans: evidence for zinc-resistant and -sensitive pathways for mycelium formation. Infect Immun 26 348 354

49. CarlislePL

BanerjeeM

LazzellA

MonteagudoC

Lopez-RibotJL

2009 Expression levels of a filament-specific transcriptional regulator are sufficient to determine Candida albicans morphology and virulence. Proc Natl Acad Sci U S A 106 599 604

50. LuY

SuC

MaoX

RanigaPP

LiuH

2008 Efg1-mediated recruitment of NuA4 to promoters is required for hypha-specific Swi/Snf binding and activation in Candida albicans. Mol Biol Cell 19 4260 4272

51. KimT

BuratowskiS

2009 Dimethylation of H3K4 by Set1 recruits the Set3 histone deacetylase complex to 5′ transcribed regions. Cell 137 259 272

52. XuXL

LeeRT

FangHM

WangYM

LiR

2008 Bacterial peptidoglycan triggers Candida albicans hyphal growth by directly activating the adenylyl cyclase Cyr1p. Cell Host Microbe 4 28 39

53. DomergueR

CastanoI

De Las PenasA

ZupancicM

LockatellV

2005 Nicotinic acid limitation regulates silencing of Candida adhesins during UTI. Science 308 866 870

54. ZhengX

WangY

2004 Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis. EMBO J 23 1845 1856

55. SavilleSP

LazzellAL

MonteagudoC

Lopez-RibotJL

2003 Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryot Cell 2 1053 1060

56. HullCM

HeitmanJ

2002 Genetics of Cryptococcus neoformans. Annu Rev Genet 36 557 615

57. SimonettiG

PassarielloC

RotiliD

MaiA

GaraciE

2007 Histone deacetylase inhibitors may reduce pathogenicity and virulence in Candida albicans. FEMS Yeast Res 7 1371 1380

58. SmithWL

EdlindTD

2002 Histone deacetylase inhibitors enhance Candida albicans sensitivity to azoles and related antifungals: correlation with reduction in CDR and ERG upregulation. Antimicrob Agents Chemother 46 3532 3539

59. TurnerB

MurchL

2009 Interscience Conference on Antimicrobial Agents and Chemotherapy–49th annual meeting. Part 1. 11–15 September 2009, San Francisco, CA, USA. IDrugs 12 667 669

60. GuentherMG

LaneWS

FischleW

VerdinE

LazarMA

2000 A core SMRT corepressor complex containing HDAC3 and TBL1, a WD40-repeat protein linked to deafness. Genes Dev 14 1048 1057

61. LiuOW

ChunCD

ChowED

ChenC

MadhaniHD

2008 Systematic genetic analysis of virulence in the human fungal pathogen Cryptococcus neoformans. Cell 135 174 188

62. NobleSM

JohnsonAD

2005 Strains and strategies for large-scale gene deletion studies of the diploid human fungal pathogen Candida albicans. Eukaryot Cell 4 298 309

63. GillumAM

TsayEY

KirschDR

1984 Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet 198 179 182

64. ReussO

VikA

KolterR

MorschhauserJ

2004 The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene 341 119 127

65. GoldsteinAL

McCuskerJH

1999 Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15 1541 1553

66. CassolaA

ParrotM

SilbersteinS

MageeBB

PasseronS

2004 Candida albicans lacking the gene encoding the regulatory subunit of protein kinase A displays a defect in hyphal formation and an altered localization of the catalytic subunit. Eukaryot Cell 3 190 199

67. RomanE

NombelaC

PlaJ

2005 The Sho1 adaptor protein links oxidative stress to morphogenesis and cell wall biosynthesis in the fungal pathogen Candida albicans. Mol Cell Biol 25 10611 10627

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#