#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Muc2 Protects against Lethal Infectious Colitis by Disassociating Pathogenic and Commensal Bacteria from the Colonic Mucosa


Despite recent advances in our understanding of the pathogenesis of attaching and effacing (A/E) Escherichia coli infections, the mechanisms by which the host defends against these microbes are unclear. The goal of this study was to determine the role of goblet cell-derived Muc2, the major intestinal secretory mucin and primary component of the mucus layer, in host protection against A/E pathogens. To assess the role of Muc2 during A/E bacterial infections, we inoculated Muc2 deficient (Muc2−/−) mice with Citrobacter rodentium, a murine A/E pathogen related to diarrheagenic A/E E. coli. Unlike wildtype (WT) mice, infected Muc2−/− mice exhibited rapid weight loss and suffered up to 90% mortality. Stool plating demonstrated 10–100 fold greater C. rodentium burdens in Muc2−/− vs. WT mice, most of which were found to be loosely adherent to the colonic mucosa. Histology of Muc2−/− mice revealed ulceration in the colon amid focal bacterial microcolonies. Metabolic labeling of secreted mucins in the large intestine demonstrated that mucin secretion was markedly increased in WT mice during infection compared to uninfected controls, suggesting that the host uses increased mucin release to flush pathogens from the mucosal surface. Muc2 also impacted host-commensal interactions during infection, as FISH analysis revealed C. rodentium microcolonies contained numerous commensal microbes, which was not observed in WT mice. Orally administered FITC-Dextran and FISH staining showed significantly worsened intestinal barrier disruption in Muc2−/− vs. WT mice, with overt pathogen and commensal translocation into the Muc2−/− colonic mucosa. Interestingly, commensal depletion enhanced C. rodentium colonization of Muc2−/− mice, although colonic pathology was not significantly altered. In conclusion, Muc2 production is critical for host protection during A/E bacterial infections, by limiting overall pathogen and commensal numbers associated with the colonic mucosal surface. Such actions limit tissue damage and translocation of pathogenic and commensal bacteria across the epithelium.


Vyšlo v časopise: Muc2 Protects against Lethal Infectious Colitis by Disassociating Pathogenic and Commensal Bacteria from the Colonic Mucosa. PLoS Pathog 6(5): e32767. doi:10.1371/journal.ppat.1000902
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1000902

Souhrn

Despite recent advances in our understanding of the pathogenesis of attaching and effacing (A/E) Escherichia coli infections, the mechanisms by which the host defends against these microbes are unclear. The goal of this study was to determine the role of goblet cell-derived Muc2, the major intestinal secretory mucin and primary component of the mucus layer, in host protection against A/E pathogens. To assess the role of Muc2 during A/E bacterial infections, we inoculated Muc2 deficient (Muc2−/−) mice with Citrobacter rodentium, a murine A/E pathogen related to diarrheagenic A/E E. coli. Unlike wildtype (WT) mice, infected Muc2−/− mice exhibited rapid weight loss and suffered up to 90% mortality. Stool plating demonstrated 10–100 fold greater C. rodentium burdens in Muc2−/− vs. WT mice, most of which were found to be loosely adherent to the colonic mucosa. Histology of Muc2−/− mice revealed ulceration in the colon amid focal bacterial microcolonies. Metabolic labeling of secreted mucins in the large intestine demonstrated that mucin secretion was markedly increased in WT mice during infection compared to uninfected controls, suggesting that the host uses increased mucin release to flush pathogens from the mucosal surface. Muc2 also impacted host-commensal interactions during infection, as FISH analysis revealed C. rodentium microcolonies contained numerous commensal microbes, which was not observed in WT mice. Orally administered FITC-Dextran and FISH staining showed significantly worsened intestinal barrier disruption in Muc2−/− vs. WT mice, with overt pathogen and commensal translocation into the Muc2−/− colonic mucosa. Interestingly, commensal depletion enhanced C. rodentium colonization of Muc2−/− mice, although colonic pathology was not significantly altered. In conclusion, Muc2 production is critical for host protection during A/E bacterial infections, by limiting overall pathogen and commensal numbers associated with the colonic mucosal surface. Such actions limit tissue damage and translocation of pathogenic and commensal bacteria across the epithelium.


Zdroje

1. NataroJP

KaperJB

1998 Diarrheagenic Escherichia coli. Clin Microbiol Rev 11 142 201

2. Fagundes-NetoU

AndradeJABd

1999 Acute Diarrhea and Malnutrition: Lethality Risk in Hospitalized Infants. J Am Coll Nutr 18 303 308

3. VilchezS

ReyesD

PaniaguaM

BucardoF

MollbyR

2009 Prevalence of diarrhoeagenic Escherichia coli in children from Leon, Nicaragua. J Med Microbiol 58 630 637

4. Gonzalez GarciaEA

2002 Animal health and foodborne pathogens: enterohaemorrhagic O157:H7 strains and other pathogenic Escherichia coli virotypes (EPEC, ETEC, EIEC, EHEC). Pol J Vet Sci 5 103 115

5. KarchH

TarrPI

BielaszewskaM

2005 Enterohaemorrhagic Escherichia coli in human medicine. International Journal of Medical Microbiology 295 405 418

6. YoonJW

HovdeCJ

2008 All blood, no stool: enterohemorrhagic Escherichia coli O157:H7 infection. J Vet Sci 9 219 231

7. WalesAD

WoodwardMJ

PearsonGR

2005 Attaching-effacing bacteria in animals. J Comp Pathol 132 1 26

8. VallanceBA

FinlayBB

2000 Exploitation of host cells by enteropathogenic Escherichia coli. Proc Natl Acad Sci U S A 97 8799 8806

9. LuperchioSA

SchauerDB

2001 Molecular pathogenesis of Citrobacter rodentium and transmissible murine colonic hyperplasia. Microbes Infect 3 333 340

10. MundyR

MacDonaldTT

DouganG

FrankelG

WilesS

2005 Citrobacter rodentium of mice and man. Cell Microbiol 7 1697 1706

11. BryL

BrennerMB

2004 Critical Role of T Cell-Dependent Serum Antibody, but Not the Gut-Associated Lymphoid Tissue, for Surviving Acute Mucosal Infection with Citrobacter rodentium, an Attaching and Effacing Pathogen. J Immunol 172 433 441

12. MaaserC

HousleyMP

IimuraM

SmithJR

VallanceBA

2004 Clearance of Citrobacter rodentium Requires B Cells but Not Secretory Immunoglobulin A (IgA) or IgM Antibodies. Infect Immun 72 3315 3324

13. IimuraM

GalloRL

HaseK

MiyamotoY

EckmannL

2005 Cathelicidin mediates innate intestinal defense against colonization with epithelial adherent bacterial pathogens. J Immunol 174 4901 4907

14. VallanceBA

DijkstraG

QiuB

van der WaaijLA

van GoorH

2004 Relative contributions of NOS isoforms during experimental colitis: endothelial-derived NOS maintains mucosal integrity. Am J Physiol Gastrointest Liver Physiol 287 G865 874

15. LindenSK

SuttonP

KarlssonNG

KorolikV

McGuckinMA

2008 Mucins in the mucosal barrier to infection. Mucosal Immunol 1 183 197

16. DharmaniP

SrivastavaV

Kissoon-SinghV

ChadeeK

2009 Role of Intestinal Mucins in Innate Host Defense Mechanisms against Pathogens. Journal of Innate Immunity 1 123 135

17. Lievin-Le MoalV

ServinAL

2006 The Front Line of Enteric Host Defense against Unwelcome Intrusion of Harmful Microorganisms: Mucins, Antimicrobial Peptides, and Microbiota. Clin Microbiol Rev 19 315 337

18. McAuleyJL

LindenSK

PngCW

KingRM

PenningtonHL

2007 MUC1 cell surface mucin is a critical element of the mucosal barrier to infection. J Clin Invest 117 2313 2324

19. LindenSK

FlorinTH

McGuckinMA

2008 Mucin dynamics in intestinal bacterial infection. PLoS One 3 e3952

20. MackDR

MichailS

WeiS

McDougallL

HollingsworthMA

1999 Probiotics inhibit enteropathogenic E.†coli adherence in vitro by inducing intestinal mucin gene expression. Am J Physiol Gastrointest Liver Physiol 276 G941 950

21. AllenA

HuttonDA

PearsonJP

1998 The MUC2 gene product: a human intestinal mucin. The International Journal of Biochemistry & Cell Biology 30 797 801

22. Van KlinkenBJ-W

EinerhandAWC

DuitsLA

MakkinkMK

TytgatKMAJ

1999 Gastrointestinal expression and partial cDNA cloning of murine Muc2. Am J Physiol Gastrointest Liver Physiol 276 G115 124

23. SpecianRD

OliverMG

1991 Functional biology of intestinal goblet cells. Am J Physiol 260 C183 193

24. JohanssonMEV

ThomssonKA

HanssonGC

2009 Proteomic Analyses of the Two Mucus Layers of the Colon Barrier Reveal That Their Main Component, the Muc2 Mucin, Is Strongly Bound to the Fcgbp Protein. Journal of Proteome Research 8 3549 3557

25. AtumaC

StrugalaV

AllenA

HolmL

2001 The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am J Physiol Gastrointest Liver Physiol 280 G922 929

26. MatsuoK

OtaH

AkamatsuT

SugiyamaA

KatsuyamaT

1997 Histochemistry of the surface mucous gel layer of the human colon. Gut 40 782 789

27. JohanssonME

PhillipsonM

PeterssonJ

VelcichA

HolmL

2008 The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci U S A 105 15064 15069

28. VelcichA

YangW

HeyerJ

FragaleA

NicholasC

2002 Colorectal cancer in mice genetically deficient in the mucin Muc2. Science 295 1726 1729

29. Van der SluisM

De KoningBA

De BruijnAC

VelcichA

MeijerinkJP

2006 Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 131 117 129

30. YangK

PopovaNV

YangWC

LozonschiI

TadesseS

2008 Interaction of Muc2 and Apc on Wnt signaling and in intestinal tumorigenesis: potential role of chronic inflammation. Cancer Res 68 7313 7322

31. YangW

VelcichA

LozonschiI

LiangJ

NicholasC

2005 Inactivation of p21WAF1/cip1 enhances intestinal tumor formation in Muc2−/− mice. Am J Pathol 166 1239 1246

32. HeazlewoodCK

CookMC

EriR

PriceGR

TauroSB

2008 Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLoS Med 5 e54

33. DeplanckeB

GaskinsHR

2001 Microbial modulation of innate defense: goblet cells and the intestinal mucus layer. Am J Clin Nutr 73 1131S 1141S

34. SwidsinskiA

Loening-BauckeV

TheissigF

EngelhardtH

BengmarkS

2007 Comparative study of the intestinal mucus barrier in normal and inflamed colon. Gut 56 343 350

35. WilesS

PickardKM

PengK

MacDonaldTT

FrankelG

2006 In Vivo Bioluminescence Imaging of the Murine Pathogen Citrobacter rodentium. Infect Immun 74 5391 5396

36. IshigameH

KakutaS

NagaiT

KadokiM

NambuA

2009 Differential Roles of Interleukin-17A and -17F in Host Defense against Mucoepithelial Bacterial Infection and Allergic Responses. Immunity 30 108 119

37. ZhengY

ValdezPA

DanilenkoDM

HuY

SaSM

2008 Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med 14 282 289

38. ManganPR

HarringtonLE

O'QuinnDB

HelmsWS

BullardDC

2006 Transforming growth factor-[beta] induces development of the TH17 lineage. Nature 441 231 234

39. BryL

BriglM

BrennerMB

2006 CD4+-T-Cell Effector Functions and Costimulatory Requirements Essential for Surviving Mucosal Infection with Citrobacter rodentium. Infect Immun 74 673 681

40. NagaiT

AbeA

SasakawaC

2005 Targeting of Enteropathogenic Escherichia coli EspF to Host Mitochondria Is Essential for Bacterial Pathogenesis: CRITICAL ROLE OF THE 16TH LEUCINE RESIDUE IN EspF. J Biol Chem 280 2998 3011

41. TorchinskyMB

GaraudeJ

MartinAP

BlanderJM

2009 Innate immune recognition of infected apoptotic cells directs TH17 cell differentiation. Nature 458 78 82

42. GibsonDL

MaC

RosenbergerCM

BergstromKS

ValdezY

2008 Toll-like receptor 2 plays a critical role in maintaining mucosal integrity during Citrobacter rodentium-induced colitis. Cell Microbiol 10 388 403

43. DengW

PuenteJL

GruenheidS

LiY

VallanceBA

2004 Dissecting virulence: systematic and functional analyses of a pathogenicity island. Proc Natl Acad Sci U S A 101 3597 3602

44. BergstromKS

GuttmanJA

RumiM

MaC

BouzariS

2008 Modulation of intestinal goblet cell function during infection by an attaching and effacing bacterial pathogen. Infect Immun 76 796 811

45. SmithCJ

KaperJB

MackDR

1995 Intestinal mucin inhibits adhesion of human enteropathogenic Escherichia coli to HEp-2 cells. J Pediatr Gastroenterol Nutr 21 269 276

46. DengW

VallanceBA

LiY

PuenteJL

FinlayBB

2003 Citrobacter rodentium translocated intimin receptor (Tir) is an essential virulence factor needed for actin condensation, intestinal colonization and colonic hyperplasia in mice. Mol Microbiol 48 95 115

47. VallanceBA

DengW

De GradoM

ChanC

JacobsonK

2002 Modulation of inducible nitric oxide synthase expression by the attaching and effacing bacterial pathogen citrobacter rodentium in infected mice. Infect Immun 70 6424 6435

48. Meyer-HoffertU

HornefMW

Henriques-NormarkB

AxelssonLG

MidtvedtT

2008 Secreted enteric antimicrobial activity localises to the mucus surface layer. Gut 57 764 771

49. MantleM

HusarSD

1993 Adhesion of Yersinia enterocolitica to purified rabbit and human intestinal mucin. Infect Immun 61 2340 2346

50. Lievin-Le MoalV

ServinAL

Coconnier-PolterMH

2005 The increase in mucin exocytosis and the upregulation of MUC genes encoding for membrane-bound mucins induced by the thiol-activated exotoxin listeriolysin O is a host cell defence response that inhibits the cell-entry of Listeria monocytogenes. Cell Microbiol 7 1035 1048

51. EnssML

MullerH

Schmidt-WittigU

KownatzkiR

CoenenM

1996 Effects of perorally applied endotoxin on colonic mucins of germfree rats. Scand J Gastroenterol 31 868 874

52. Caballero-FrancoC

KellerK

De SimoneC

ChadeeK

2007 The VSL#3 probiotic formula induces mucin gene expression and secretion in colonic epithelial cells. Am J Physiol Gastrointest Liver Physiol 292 G315 322

53. TytgatKM

BullerHA

OpdamFJ

KimYS

EinerhandAW

1994 Biosynthesis of human colonic mucin: Muc2 is the prominent secretory mucin. Gastroenterology 107 1352 1363

54. TytgatKM

OpdamFJ

EinerhandAW

BullerHA

DekkerJ

1996 MUC2 is the prominent colonic mucin expressed in ulcerative colitis. Gut 38 554 563

55. RongM

RossiEA

ZhangJ

McNeerRR

van den BrandeJM

2005 Expression and localization of Muc4/sialomucin complex (SMC) in the adult and developing rat intestine: implications for Muc4/SMC function. J Cell Physiol 202 275 284

56. DasB

CashMN

HandAR

ShivazadA

GrieshaberSS

Tissue Distibution of Murine Muc19/Smgc Gene Products. J Histochem Cytochem 58 141 156

57. EscandeF

PorchetN

BernigaudA

PetitprezD

AubertJ-P

2004 The mouse secreted gel-forming mucin gene cluster. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression 1676 240 250

58. LuppC

RobertsonML

WickhamME

SekirovI

ChampionOL

2007 Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2 204

59. HoffmannC

HillDA

MinkahN

KirnT

TroyA

2009 Community-Wide Response of the Gut Microbiota to Enteropathogenic Citrobacter rodentium Infection Revealed by Deep Sequencing. Infect Immun 77 4668 4678

60. KhanMA

BouzariS

MaC

RosenbergerCM

BergstromKS

2008 Flagellin-dependent and -independent inflammatory responses following infection by enteropathogenic Escherichia coli and Citrobacter rodentium. Infect Immun 76 1410 1422

61. GrysTE

WaltersLL

WelchRA

2006 Characterization of the StcE protease activity of Escherichia coli O157:H7. J Bacteriol 188 4646 4653

62. HooperLV

2009 Do symbiotic bacteria subvert host immunity? Nat Rev Microbiol 7 367 374

63. ViswanathanVK

KoutsourisA

LukicS

PilkintonM

SimonovicI

2004 Comparative Analysis of EspF from Enteropathogenic and Enterohemorrhagic Escherichia coli in Alteration of Epithelial Barrier Function. Infect Immun 72 3218 3227

64. GunningRF

WalesAD

PearsonGR

DoneE

CooksonAL

2001 Attaching and effacing lesions in the intestines of two calves associated with natural infection with Escherichia coli O26:H11. Vet Rec 148 780 782

65. MaC

WickhamME

GuttmanJA

DengW

WalkerJ

2006 Citrobacter rodentium infection causes both mitochondrial dysfunction and intestinal epithelial barrier disruption in vivo: role of mitochondrial associated protein (Map). Cellular Microbiology 8 1669 1686

66. DannSM

SpehlmannME

HammondDC

IimuraM

HaseK

2008 IL-6-Dependent Mucosal Protection Prevents Establishment of a Microbial Niche for Attaching/Effacing Lesion-Forming Enteric Bacterial Pathogens. J Immunol 180 6816 6826

67. GuttmanJA

LiY

WickhamME

DengW

VoglAW

2006 Attaching and effacing pathogen-induced tight junction disruption in vivo. Cellular Microbiology 8 634 645

68. StecherBr

RobbianiR

WalkerAW

WestendorfAM

BarthelM

2007 Salmonella enterica Serovar Typhimurium Exploits Inflammation to Compete with the Intestinal Microbiota. PLoS Biol 5 e244

69. WilesS

PickardKM

PengK

MacDonaldTT

FrankelG

2006 In vivo bioluminescence imaging of the murine pathogen Citrobacter rodentium. Infect Immun 74 5391 5396

70. SmirnovaMG

GuoL

BirchallJP

PearsonJP

2003 LPS up-regulates mucin and cytokine mRNA expression and stimulates mucin and cytokine secretion in goblet cells. Cell Immunol 221 42 49

71. IwashitaJ

SatoY

SugayaH

TakahashiN

SasakiH

2003 mRNA of MUC2 is stimulated by IL-4, IL-13 or TNF-[alpha] through a mitogen-activated protein kinase pathway in human colon cancer cells. Immunol Cell Biol 81 275 282

72. PlaisancieP

BarceloA

MoroF

ClaustreJ

ChayvialleJ-A

1998 Effects of neurotransmitters, gut hormones, and inflammatory mediators on mucus discharge in rat colon. Am J Physiol Gastrointest Liver Physiol 275 G1073 1084

73. KimS

NadelJA

2004 Role of neutrophils in mucus hypersecretion in COPD and implications for therapy. Treat Respir Med 3 147 159

74. LebeisSL

BommariusB

ParkosCA

ShermanMA

KalmanD

2007 TLR signaling mediated by MyD88 is required for a protective innate immune response by neutrophils to Citrobacter rodentium. J Immunol 179 566 577

75. GibsonDL

MaC

BergstromKS

HuangJT

ManC

2008 MyD88 signalling plays a critical role in host defence by controlling pathogen burden and promoting epithelial cell homeostasis during Citrobacter rodentium-induced colitis. Cell Microbiol 10 618 631

76. ConlinVS

WuX

NguyenC

DaiC

VallanceBA

2009 Vasoactive Intestinal Peptide Ameliorates Intestinal Barrier Disruption Associated with Citrobacter rodentium-induced Colitis. Am J Physiol Gastrointest Liver Physiol

77. LindénSK

ShengYH

EveryAL

MilesKM

SkoogEC

2009 MUC1 Limits Helicobacter pylori Infection both by Steric Hindrance and by Acting as a Releasable Decoy. PLoS Pathog 5 e1000617

78. HoeblerC

GaudierE

De CoppetP

RivalM

CherbutC

2006 MUC Genes Are Differently Expressed During Onset and Maintenance of Inflammation in Dextran Sodium Sulfate-Treated Mice. Digestive Diseases and Sciences 51 381 389

79. HasnainSZ

WangH

GhiaJ-E

HaqN

DengY

Mucin Gene Deficiency in Mice Impairs Host Resistance to an Enteric Parasitic Infection. Gastroenterology In Press, Accepted Manuscript

80. ShamesSR

AuweterSD

FinlayBB

2009 Co-evolution and exploitation of host cell signaling pathways by bacterial pathogens. The International Journal of Biochemistry & Cell Biology 41 380 389

81. ChessaD

WinterMG

JakominM

B‰umlerAJ

2009 Salmonella enterica serotype Typhimurium Std fimbriae bind terminal α-03B1;(1,2)fucose residues in the cecal mucosa. Molecular Microbiology 71 864 875

82. VimalDB

KhullarM

GuptaS

GangulyNK

2000 Intestinal mucins: the binding sites for Salmonella typhimurium. Mol Cell Biochem 204 107 117

83. MantleM

RomboughC

1993 Growth in and breakdown of purified rabbit small intestinal mucin by Yersinia enterocolitica. Infect Immun 61 4131 4138

84. StecherBr

BarthelM

SchlumbergerMC

HaberliL

RabschW

2008 Motility allows S. Typhimurium to benefit from the mucosal defence. Cellular Microbiology 10 1166 1180

85. ChadeeK

KellerK

ForstnerJ

InnesDJ

RavdinJI

1991 Mucin and nonmucin secretagogue activity of Entamoeba histolytica and cholera toxin in rat colon. Gastroenterology 100 986 997

86. LidellME

MoncadaDM

ChadeeK

HanssonGC

2006 Entamoeba histolytica cysteine proteases cleave the MUC2 mucin in its C-terminal domain and dissolve the protective colonic mucus gel. Proc Natl Acad Sci U S A 103 9298 9303

87. MoncadaD

KellerK

ChadeeK

2003 Entamoeba histolytica cysteine proteinases disrupt the polymeric structure of colonic mucin and alter its protective function. Infect Immun 71 838 844

88. KhanMA

MaC

KnodlerLA

ValdezY

RosenbergerCM

2006 Toll-like receptor 4 contributes to colitis development but not to host defense during Citrobacter rodentium infection in mice. Infect Immun 74 2522 2536

89. DeanP

MarescaM

SchullerS

PhillipsAD

KennyB

2006 Potent diarrheagenic mechanism mediated by the cooperative action of three enteropathogenic Escherichia coli-injected effector proteins. Proc Natl Acad Sci U S A 103 1876 1881

90. BrownNF

VallanceBA

CoombesBK

ValdezY

CoburnBA

2005 Salmonella Pathogenicity Island 2 Is Expressed Prior to Penetrating the Intestine. PLoS Pathog 1 e32

91. AmannRI

KrumholzL

StahlDA

1990 Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172 762 770

92. TurnerJ

ChoY

DinhNN

WaringAJ

LehrerRI

1998 Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob Agents Chemother 42 2206 2214

93. BarthelM

HapfelmeierS

Quintanilla-MartinezL

KremerM

RohdeM

2003 Pretreatment of mice with streptomycin provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host. Infect Immun 71 2839 2858

94. RheeSJ

WalkerWA

CherayilBJ

2005 Developmentally Regulated Intestinal Expression of IFN-{gamma} and Its Target Genes and the Age-Specific Response to Enteric Salmonella Infection. J Immunol 175 1127 1136

95. NenciA

BeckerC

WullaertA

GareusR

van LooG

2007 Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 446 557 561

96. MarriottI

GrayDL

RatiDM

FowlerVGJr

StryjewskiME

2005 Osteoblasts produce monocyte chemoattractant protein-1 in a murine model of Staphylococcus aureus osteomyelitis and infected human bone tissue. Bone 37 504 512

97. SugawaraI

YamadaH

LiC

MizunoS

TakeuchiO

2003 Mycobacterial Infection in TLR2 and TLR6 Knockout Mice. MICROBIOLOGY and IMMUNOLOGY 47 327 336

98. GodinezI

HanedaT

RaffatelluM

GeorgeMD

PaixaoTA

2008 T Cells Help To Amplify Inflammatory Responses Induced by Salmonella enterica Serotype Typhimurium in the Intestinal Mucosa. Infect Immun 76 2008 2017

99. HappelKI

LockhartEA

MasonCM

PorrettaE

KeoshkerianE

2005 Pulmonary Interleukin-23 Gene Delivery Increases Local T-Cell Immunity and Controls Growth of Mycobacterium tuberculosis in the Lungs. Infect Immun 73 5782 5788

100. BrandS

BeigelF

OlszakT

ZitzmannK

EichhorstST

2006 IL-22 is increased in active Crohn's disease and promotes proinflammatory gene expression and intestinal epithelial cell migration. Am J Physiol Gastrointest Liver Physiol 290 G827 838

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#