HIV-1 Transmitting Couples Have Similar Viral Load Set-Points in Rakai, Uganda
It has been hypothesized that HIV-1 viral load set-point is a surrogate measure of HIV-1 viral virulence, and that it may be subject to natural selection in the human host population. A key test of this hypothesis is whether viral load set-points are correlated between transmitting individuals and those acquiring infection. We retrospectively identified 112 heterosexual HIV-discordant couples enrolled in a cohort in Rakai, Uganda, in which HIV transmission was suspected and viral load set-point was established. In addition, sequence data was available to establish transmission by genetic linkage for 57 of these couples. Sex, age, viral subtype, index partner, and self-reported genital ulcer disease status (GUD) were known. Using ANOVA, we estimated the proportion of variance in viral load set-points which was explained by the similarity within couples (the ‘couple effect’). Individuals with suspected intra-couple transmission (97 couples) had similar viral load set-points (p = 0.054 single factor model, p = 0.0057 adjusted) and the couple effect explained 16% of variance in viral loads (23% adjusted). The analysis was repeated for a subset of 29 couples with strong genetic support for transmission. The couple effect was the major determinant of viral load set-point (p = 0.067 single factor, and p = 0.036 adjusted) and the size of the effect was 27% (37% adjusted). Individuals within epidemiologically linked couples with genetic support for transmission had similar viral load set-points. The most parsimonious explanation is that this is due to shared characteristics of the transmitted virus, a finding which sheds light on both the role of viral factors in HIV-1 pathogenesis and on the evolution of the virus.
Vyšlo v časopise:
HIV-1 Transmitting Couples Have Similar Viral Load Set-Points in Rakai, Uganda. PLoS Pathog 6(5): e32767. doi:10.1371/journal.ppat.1000876
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1000876
Souhrn
It has been hypothesized that HIV-1 viral load set-point is a surrogate measure of HIV-1 viral virulence, and that it may be subject to natural selection in the human host population. A key test of this hypothesis is whether viral load set-points are correlated between transmitting individuals and those acquiring infection. We retrospectively identified 112 heterosexual HIV-discordant couples enrolled in a cohort in Rakai, Uganda, in which HIV transmission was suspected and viral load set-point was established. In addition, sequence data was available to establish transmission by genetic linkage for 57 of these couples. Sex, age, viral subtype, index partner, and self-reported genital ulcer disease status (GUD) were known. Using ANOVA, we estimated the proportion of variance in viral load set-points which was explained by the similarity within couples (the ‘couple effect’). Individuals with suspected intra-couple transmission (97 couples) had similar viral load set-points (p = 0.054 single factor model, p = 0.0057 adjusted) and the couple effect explained 16% of variance in viral loads (23% adjusted). The analysis was repeated for a subset of 29 couples with strong genetic support for transmission. The couple effect was the major determinant of viral load set-point (p = 0.067 single factor, and p = 0.036 adjusted) and the size of the effect was 27% (37% adjusted). Individuals within epidemiologically linked couples with genetic support for transmission had similar viral load set-points. The most parsimonious explanation is that this is due to shared characteristics of the transmitted virus, a finding which sheds light on both the role of viral factors in HIV-1 pathogenesis and on the evolution of the virus.
Zdroje
1. FellayJ
ShiannaKV
GeD
ColomboS
LedergerberB
2007 A whole-genome association study of major determinants for host control of HIV-1. Science 317 944 947
2. KankiPJ
HamelDJ
SankaleJL
HsiehC
ThiorI
1999 Human immunodeficiency virus type 1 subtypes differ in disease progression. J Infect Dis 179 68 73
3. KaleebuP
FrenchN
MaheC
YirrellD
WateraC
2002 Effect of human immunodeficiency virus (HIV) type 1 envelope subtypes A and D on disease progression in a large cohort of HIV-1-positive persons in Uganda. J Infect Dis 185 1244 1250
4. NeilsonJR
JohnGC
CarrJK
LewisP
KreissJK
1999 Subtypes of HIV-1 and disease stage among women in Nairobi, Kenya. Journal of Virology 73 4393 4403
5. SpiraS
WainbergMA
LoembaH
TurnerD
BrennerBG
2003 Impact of clade diversity on HIV-1 virulence, antiretroviral drug sensitivity and drug resistance. Journal of Antimicrobial Chemotherapy 51 229 240
6. KiwanukaN
LaeyendeckerO
RobbM
KigoziG
ArroyoM
2008 Effect of human immunodeficiency virus Type 1 (HIV-1) subtype on disease progression in persons from Rakai, Uganda, with incident HIV-1 infection. J Infect Dis 197 707 713
7. TaylorBS
SobieszczykME
McCutchanFE
HammerSM
2008 The challenge of HIV-1 subtype diversity. N Engl J Med 358 1590 1602
8. BaetenJM
ChohanB
LavreysL
ChohanV
McClellandRS
2007 HIV-1 subtype D infection is associated with faster disease progression than subtype A in spite of similar plasma HIV-1 loads. J Infect Dis 195 1177 1180
9. FraserC
HollingsworthTD
ChapmanR
de WolfF
HanageWP
2007 Variation in HIV-1 set-point viral load: epidemiological analysis and an evolutionary hypothesis. Proc Natl Acad Sci U S A 104 17441 17446
10. MellorsJW
RinaldoCRJr
GuptaP
WhiteRM
ToddJA
1996 Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science 272 1167 1170
11. KivelaPS
KrolA
SalminenMO
GeskusRB
SuniJI
2005 High plasma HIV load in the CRF01-AE outbreak among injecting drug users in Finland. Scand J Infect Dis 37 276 283
12. GoldsteinS
OurmanovI
BrownCR
PlishkaR
Buckler-WhiteA
2005 Plateau levels of viremia correlate with the degree of CD4+-T-cell loss in simian immunodeficiency virus SIVagm-infected pigtailed macaques: variable pathogenicity of natural SIVagm isolates. J Virol 79 5153 5162
13. BallSC
AbrahaA
CollinsKR
MarozsanAJ
BairdH
2003 Comparing the ex vivo fitness of CCR5-tropic human immunodeficiency virus type 1 isolates of subtypes B and C. J Virol 77 1021 1038
14. ArienKK
AbrahaA
Quinones-MateuME
KestensL
VanhamG
2005 The Replicative Fitness of Primary Human Immunodeficiency Virus Type 1 (HIV-1) Group M, HIV-1 Group O, and HIV-2 Isolates. J Virol 79 8979 8990
15. AshtonLJ
LearmontJ
LuoK
WylieB
StewartG
1994 HIV infection in recipients of blood products from donors with known duration of infection. Lancet 344 718 720
16. IoannidisJPA
TatsioniA
AbramsEJ
BulterysM
CoombsRW
2004 Maternal viral load and rate of disease progression among vertically HIV-1-infected children: an international meta- analysis. AIDS 18 99 108
17. TangJ
TangS
LobashevskyE
ZuluI
AldrovandiG
2004 HLA allele sharing and HIV type 1 viremia in seroconverting Zambians with known transmitting partners. AIDS Res Hum Retroviruses 20 19 25
18. WawerMJ
GrayRH
SewankamboNK
SerwaddaD
PaxtonL
1998 A randomized, community trial of intensive sexually transmitted disease control for AIDS prevention, Rakai, Uganda. AIDS 12 1211 1225
19. WawerMJ
SewankamboNK
SerwaddaD
QuinnTC
PaxtonLA
1999 Control of sexually transmitted diseases for AIDS prevention in Uganda: a randomised community trial. Rakai Project Study Group. Lancet 353 525 535
20. HoelscherM
DowlingWE
Sanders-BuellE
CarrJK
HarrisME
2002 Detection of HIV-1 subtypes, recombinants, and dual infections in east Africa by a multi-region hybridization assay. AIDS 16 2055 2064
21. LutaloT
GrayRH
WawerM
SewankamboN
SerwaddaD
2007 Survival of HIV-infected treatment-naive individuals with documented dates of seroconversion in Rakai, Uganda. AIDS 21 Suppl 6 S15 19
22. WawerMJ
GrayRH
SewankamboNK
SerwaddaD
LiX
2005 Rates of HIV-1 transmission per coital act, by stage of HIV-1 infection, in Rakai, Uganda. J Infect Dis 191 1403 1409
23. PosadaD
2008 jModelTest: phylogenetic model averaging. Mol Biol Evol 25 1253 1256
24. GuindonS
GascuelO
2003 A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52 696 704
25. StamatakisA
2006 RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22 2688 2690
26. StamatakisA
HooverP
RougemontJ
2008 A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol 57 758 771
27. StamatakisA
BlagojevicF
NikolopoulosDS
AntonopoulosCD
2007 Exploring new search algorithms and hardware for phylogenetics: RAxML meets the IBM cell. Journal of Vlsi Signal Processing Systems for Signal Image and Video Technology 48 271 286
28. GrayRH
LiX
WawerMJ
SerwaddaD
SewankamboNK
2004 Determinants of HIV-1 load in subjects with early and later HIV infections, in a general-population cohort of Rakai, Uganda. J Infect Dis 189 1209 1215
29. LynchM
WalshB
1998 Genetics and Analysis of Quantitative Traits. U.S.A. Sinauer Associates Inc
30. LegendreP
LegendreL
1998 Numerical Ecology: Elsevier, Amsterdam, The Netherlands
31. KeeleBF
GiorgiEE
Salazar-GonzalezJF
DeckerJM
PhamKT
2008 Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc Natl Acad Sci U S A 105 7552 7557
32. AbrahamsMR
AndersonJA
GiorgiEE
SeoigheC
MlisanaK
2009 Quantitating the multiplicity of infection with human immunodeficiency virus type 1 subtype C reveals a non-poisson distribution of transmitted variants. J Virol 83 3556 3567
33. KeeleBF
LiH
LearnGH
HraberP
GiorgiEE
2009 Low-dose rectal inoculation of rhesus macaques by SIVsmE660 or SIVmac251 recapitulates human mucosal infection by HIV-1. J Exp Med 206 1117 1134
34. HaalandRE
HawkinsPA
Salazar-GonzalezJ
JohnsonA
TichacekA
2009 Inflammatory genital infections mitigate a severe genetic bottleneck in heterosexual transmission of subtype A and C HIV-1. PLoS Pathog 5 e1000274 doi :10.1371/journal.ppat.1000274
35. LeslieAJ
PfafferottKJ
ChettyP
DraenertR
AddoMM
2004 HIV evolution: CTL escape mutation and reversion after transmission. Nat Med 10 282 289
36. CoombsRW
ReichelderferPS
LandayAL
2003 Recent observations on HIV type-1 infection in the genital tract of men and women. AIDS 17 455 480
37. O'BrienSJ
NelsonGW
2004 Human genes that limit AIDS. Nat Genet 36 565 574
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2010 Číslo 5
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Quorum Sensing Inhibition Selects for Virulence and Cooperation in
- The Role of Intestinal Microbiota in the Development and Severity of Chemotherapy-Induced Mucositis
- Susceptibility to Anthrax Lethal Toxin-Induced Rat Death Is Controlled by a Single Chromosome 10 Locus That Includes
- Demonstration of Cross-Protective Vaccine Immunity against an Emerging Pathogenic Ebolavirus Species