A Complex Small RNA Repertoire Is Generated by a Plant/Fungal-Like Machinery and Effected by a Metazoan-Like Argonaute in the Single-Cell Human Parasite
In RNA silencing, small RNAs produced by the RNase-III Dicer guide Argonaute-like proteins as part of RNA-induced silencing complexes (RISC) to regulate gene expression transcriptionally or post-transcriptionally. Here, we have characterized the RNA silencing machinery and exhaustive small RNAome of Toxoplasma gondii, member of the Apicomplexa, a phylum of animal- and human-infecting parasites that cause extensive health and economic damages to human populations worldwide. Remarkably, the small RNA-generating machinery of Toxoplasma is phylogenetically and functionally related to that of plants and fungi, and accounts for an exceptionally diverse array of small RNAs. This array includes conspicuous populations of repeat-associated small interfering RNA (siRNA), which, as in plants, likely generate and maintain heterochromatin at DNA repeats and satellites. Toxoplasma small RNAs also include many microRNAs with clear metazoan-like features whose accumulation is sometimes extremely high and dynamic, an unexpected finding given that Toxoplasma is a unicellular protist. Both plant-like heterochromatic small RNAs and metazoan-like microRNAs bind to a single Argonaute protein, Tg-AGO. Toxoplasma miRNAs co-sediment with polyribosomes, and thus, are likely to act as translational regulators, consistent with the lack of catalytic residues in Tg-AGO. Mass spectrometric analyses of the Tg-AGO protein complex revealed a common set of virtually all known RISC components so far characterized in human and Drosophila, as well as novel proteins involved in RNA metabolism. In agreement with its loading with heterochromatic small RNAs, Tg-AGO also associates substoichiometrically with components of known chromatin-repressing complexes. Thus, a puzzling patchwork of silencing processor and effector proteins from plant, fungal and metazoan origin accounts for the production and action of an unsuspected variety of small RNAs in the single-cell parasite Toxoplasma and possibly in other apicomplexans. This study establishes Toxoplasma as a unique model system for studying the evolution and molecular mechanisms of RNA silencing among eukaryotes.
Vyšlo v časopise:
A Complex Small RNA Repertoire Is Generated by a Plant/Fungal-Like Machinery and Effected by a Metazoan-Like Argonaute in the Single-Cell Human Parasite. PLoS Pathog 6(5): e32767. doi:10.1371/journal.ppat.1000920
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1000920
Souhrn
In RNA silencing, small RNAs produced by the RNase-III Dicer guide Argonaute-like proteins as part of RNA-induced silencing complexes (RISC) to regulate gene expression transcriptionally or post-transcriptionally. Here, we have characterized the RNA silencing machinery and exhaustive small RNAome of Toxoplasma gondii, member of the Apicomplexa, a phylum of animal- and human-infecting parasites that cause extensive health and economic damages to human populations worldwide. Remarkably, the small RNA-generating machinery of Toxoplasma is phylogenetically and functionally related to that of plants and fungi, and accounts for an exceptionally diverse array of small RNAs. This array includes conspicuous populations of repeat-associated small interfering RNA (siRNA), which, as in plants, likely generate and maintain heterochromatin at DNA repeats and satellites. Toxoplasma small RNAs also include many microRNAs with clear metazoan-like features whose accumulation is sometimes extremely high and dynamic, an unexpected finding given that Toxoplasma is a unicellular protist. Both plant-like heterochromatic small RNAs and metazoan-like microRNAs bind to a single Argonaute protein, Tg-AGO. Toxoplasma miRNAs co-sediment with polyribosomes, and thus, are likely to act as translational regulators, consistent with the lack of catalytic residues in Tg-AGO. Mass spectrometric analyses of the Tg-AGO protein complex revealed a common set of virtually all known RISC components so far characterized in human and Drosophila, as well as novel proteins involved in RNA metabolism. In agreement with its loading with heterochromatic small RNAs, Tg-AGO also associates substoichiometrically with components of known chromatin-repressing complexes. Thus, a puzzling patchwork of silencing processor and effector proteins from plant, fungal and metazoan origin accounts for the production and action of an unsuspected variety of small RNAs in the single-cell parasite Toxoplasma and possibly in other apicomplexans. This study establishes Toxoplasma as a unique model system for studying the evolution and molecular mechanisms of RNA silencing among eukaryotes.
Zdroje
1. MillerCM
BoulterNR
IkinRJ
SmithNC
2009 The immunobiology of the innate response to Toxoplasma gondii. Int J Parasitol 39 23 39
2. BladerIJ
SaeijJP
2009 Communication between Toxoplasma gondii and its host: impact on parasite growth, development, immune evasion, and virulence. APMIS 117 458 76
3. SullivanWJJr
SmithAT
JoyceBR
2009 Understanding mechanisms and the role of differentiation in pathogenesis of Toxoplasma gondii: a review. Mem Inst Oswaldo Cruz 104 155 161
4. HakimiMA
DeitschKW
2007 Epigenetics in Apicomplexa: control of gene expression during cell cycle progression, differentiation and antigenic variation. Curr Opin Microbiol 10 357 362
5. IyerLM
AnantharamanV
WolfMY
AravindL
2008 Comparative genomics of transcription factors and chromatin proteins in parasitic protists and other eukaryotes. Int J Parasitol 38 1 31
6. SullivanWJJr
HakimiMA
2006 Histone mediated gene activation in Toxoplasma gondii. Mol Biochem Parasitol 148 109 116
7. BougdourA
SautelCF
CannellaD
BraunL
HakimiMA
2008 Toxoplasma gondii gene expression is under the control of regulatory pathways acting through chromatin structure. Parasite 3 206 210
8. HannonGJ
2002 RNA interference. Nature 418 244 251
9. MeisterG
TuschlT
2004 Mechanisms of gene silencing by double-stranded RNA. Nature 431 343 349
10. BartelDP
2004 MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116 281 297
11. LippmanZ
MartienssenR
2004 The role of RNA interference in heterochromatic silencing. Nature 431 364 370
12. MochizukiK
GorovskyMA
2004 Small RNAs in genome rearrangement in Tetrahymena. Curr Opin Genet Dev 14 181 187
13. YaoMC
ChaoJL
2005 RNA-guided DNA deletion in Tetrahymena: an RNAi-based mechanism for programmed genome rearrangements. Annu Rev Genet 39 537 559
14. LeeSR
CollinsK
2006 Two classes of endogenous small RNAs in Tetrahymena thermophila. Genes Dev 20 28 33
15. ZhaoT
LiG
MiS
LiS
HannonGJ
2007 A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev 21 1190 1203
16. MolnárA
SchwachF
StudholmeDJ
ThuenemannEC
BaulcombeDC
2007 miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature 447 1126 1129
17. BaumJ
PapenfussAT
MairGR
JanseCJ
VlachouD
2009 Molecular genetics and comparative genomics reveal RNAi is not functional in malaria parasites. Nucleic Acids Res 37 3788 3798
18. CeruttiH
Casas-MollanoJA
2006 On the origin and functions of RNA-mediated silencing: from protists to man. Curr Genet 50 81 99
19. GajriaB
BahlA
BrestelliJ
DommerJ
FischerS
2008 ToxoDB: an integrated Toxoplasma gondii database resource. Nucleic Acids Res 36 D553 D556
20. YigitE
BatistaPJ
BeiY
PangKM
ChenCC
2006 Analysis of the C. elegans Argonaute family reveals that distinct Argonautes act sequentially during RNAi. Cell 127 747 757
21. MaJB
YuanYR
MeisterG
PeiY
TuschlT
2005 Structural basis for 5′-endspecific recognition of guide RNA by the A. fulgidus Piwi protein. Nature 434 666 670
22. ParkerJS
RoeSM
BarfordD
2005 Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex. Nature 434 663 666
23. KirinoY
KimN
de Planell-SaguerM
KhandrosE
ChioreanS
2009 Arginine methylation of Piwi proteins catalysed by dPRMT5 is required for Ago3 and Aub stability. Nat Cell Biol 11 652 658
24. KirinoY
VourekasA
SayedN
de Lima AlvesF
ThomsonT
2010 Arginine methylation of Aubergine mediates Tudor binding and germ plasm localization. RNA 16(1) 70 78
25. VaginVV
WohlschlegelJ
QuJ
JonssonZ
HuangX
2009 Proteomic analysis of murine Piwi proteins reveals a role for arginine methylation in specifying interaction with Tudor family members. Genes Dev 23(15) 1749 1762
26. ZongJ
YaoX
YinJ
ZhangD
MaH
2009 Evolution of the RNA-dependent RNA polymerase (RdRP) genes: Duplications and possible losses before and after the divergence of major eukaryotic groups. Gene 447 29 39
27. KeelingPJ
2009 Chromalveolates and the evolution of plastids by secondary endosymbiosis. J Eukaryot Microbiol 56(1) 1 8
28. LauNC
LimLP
WeinsteinEG
BartelDP
2001 An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294 858 862
29. AravinA
TuschlT
2005 Identification and characterization of small RNAs involved in RNA silencing. FEBS Lett 579 5830 5840
30. DjupedalI
PortosoM
SpåhrH
BonillaC
GustafssonCM
AllshireRC
EkwallK
2005 RNA Pol II subunit Rpb7 promotes centromeric transcription and RNAi-directed chromatin silencing. Genes Dev 19(19) 2301 2306
31. LiuQ
RandTA
KalidasS
DuF
KimHE
2003 R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 301 1921 1925
32. MacraeIJ
ZhouK
LiF
RepicA
BrooksAN
2006 Structural basis for double-stranded RNA processing by Dicer. Science 311 195 198
33. MacRaeIJ
ZhouK
DoudnaJA
2007 Structural determinants of RNA recognition and cleavage by Dicer. Nat Struct Mol Biol 14 934 940
34. LimLP
LauNC
WeinsteinEG
AbdelhakimA
YektaS
2003 The microRNAs of Caenorhabditis elegans. Genes Dev 17(8) 991 1008
35. FelippesFF
SchneebergerK
DezulianT
HusonDH
WeigelD
2008 Evolution of Arabidopsis thaliana microRNAs from random sequences. RNA 14(12) 2455 2459
36. YuB
YangZ
LiJ
MinakhinaS
YangM
2005 Methylation as a crucial step in plant microRNA biogenesis. Science 307 932 935
37. YangZ
EbrightYW
YuB
ChenX
2006 HEN1 recognizes 21-24 nt small RNA duplexes and deposits a methyl group onto the 2′ OH of the 3′ terminal nucleotide. Nucleic Acids Res 34 667 675
38. LuS
SunYH
ChiangVL
2009 Adenylation of plant miRNAs. Nucleic Acids Res 37 1878 1885
39. HöckJ
WeinmannL
EnderC
RüdelS
KremmerE
2007 Proteomic and functional analysis of Argonaute-containing mRNA-protein complexes in human cells. EMBO Rep 8 1052 1060
40. LandthalerM
GaidatzisD
RothballerA
ChenPY
SollSJ
2008 Molecular characterization of human Argonaute-containing ribonucleoprotein complexes and their bound target mRNAs. RNA 14 2580 2596
41. LanetE
DelannoyE
SormaniR
FlorisM
BrodersenP
2009 Biochemical Evidence for Translational Repression by Arabidopsis MicroRNAs. Plant Cell 21 1762 1768
42. VaucheretH
2005 MicroRNA-dependent trans-acting siRNA production. Sci STKE 2005(300) pe43
43. SibleyLD
KhanA
AjiokaJW
RosenthalBM
2009 Genetic diversity of Toxoplasma gondii in animals and humans. Philos Trans R Soc Lond B Biol Sci 364(1530) 2749 2761
44. WinterJ
JungS
KellerS
GregoryRI
DiederichsS
2009 Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11(3) 228 234
45. HeoI
JooC
ChoJ
HaM
HanJ
KimVN
2008 Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol Cell 32 276 284
46. ViswanathanSR
DaleyGQ
GregoryRI
2008 Selective blockade of microRNA processing by Lin28. Science 320 97 100
47. TrabucchiM
BriataP
Garcia-MayoralM
HaaseAD
FilipowiczW
RamosA
GherziR
RosenfeldMG
2009 The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature 459(7249) 1010 1014
48. WangY
JuranekS
LiH
ShengG
TuschlT
PatelDJ
2008 Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature 456 921 926
49. WangY
JuranekS
LiH
ShengG
WardleGS
TuschlT
PatelDJ
2009 Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature 461 754 761
50. BrodersenP
VoinnetO
2009 Revisiting the principles of microRNA target recognition and mode of action. Nat Rev Mol Cell Biol 10(2) 141 148
51. Al RiyahiA
Al-AnoutiF
Al-RayesM
AnanvoranichS
2006 Single argonaute protein from Toxoplasma gondii is involved in the double-stranded RNA induced gene silencing. Int J Parasitol 36(9) 1003 1014
52. OssorioPN
SibleyLD
BoothroydJC
1991 Mitochondrial-like DNA sequences flanked by direct and inverted repeats in the nuclear genome of Toxoplasma gondii. J Mol Biol 222 525 536
53. PiriyapongsaJ
JordanIK
2007 A family of human microRNA genes from miniature inverted-repeat transposable elements. PLoS ONE 2(2) e203
54. PiriyapongsaJ
JordanIK
2008 Dual coding of siRNAs and miRNAs by plant transposable elements. RNA 14(5) 814 821
55. ClementeM
de MiguelN
LiaVV
MatrajtM
AngelSO
2004 Structure analysis of two Toxoplasma gondii and Neospora caninum satellite DNA families and evolution of their common monomeric sequence. J Mol Evol 58 557 567
56. XieZ
JohansenLK
GustafsonAM
KasschauKD
LellisAD
ZilbermanD
JacobsenSE
CarringtonJC
2004 Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2(5) e104
57. MatzkeM
KannoT
DaxingerL
HuettelB
MatzkeAJ
2009 RNA-mediated chromatin-based silencing in plants. Curr Opin Cell Biol 21 367 376
58. OlsenPH
AmbrosV
1999 The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol 216 671 680
59. DjikengA
ShiH
TschudiC
ShenS
UlluE
2003 An siRNA ribonucleoprotein is found associated with polyribosomes in Trypanosoma brucei. RNA 9 802 808
60. KimJ
KrichevskyA
GradY
HayesGD
KosikKS
2004 Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Proc Natl Acad Sci U S A 101 360 365
61. MaroneyPA
YuY
FisherJ
NilsenTW
2006 Evidence that microRNAs are associated with translating messenger RNAs in human cells. Nat Struct Mol Biol 13 1102 1107
62. NottrottS
SimardMJ
RichterJD
2006 Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nat Struct Mol Biol 13 1108 1114
63. LeeJ
ThompsonJR
BotuyanMV
MerG
2008 Distinct binding modes specify the recognition of methylated histones H3K4 and H4K20 by JMJD2A-tudor. Nat Struct Mol Biol 15 109 111
64. FribergA
CorsiniL
MourãoA
SattlerM
2009 Structure and ligand binding of the extended Tudor domain of D. melanogaster Tudor-SN. J Mol Biol 387(4) 921 934
65. CaudyAA
KettingRF
HammondSM
DenliAM
BathoornAM
2003 A micrococcal nuclease homologue in RNAi effector complexes. Nature 425 411 414
66. ShiH
UlluE
TschudiC
2004 Function of the Trypanosome Argonaute 1 protein in RNA interference requires the N-terminal RGG domain and arginine 735 in the Piwi domain. J Biol Chem 279 49889 49893
67. ChuCY
RanaTM
2006 Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol 4(7) e210
68. ZhouR
HottaI
DenliAM
HongP
PerrimonN
2008 Comparative analysis of argonaute-dependent small RNA pathways in Drosophila. Mol Cell 32 592 599
69. CourchetJ
Buchet-PoyauK
PotemskiA
BrèsA
Jariel-EncontreI
2008 Interaction with 14-3-3 adaptors regulates the sorting of hMex-3B RNA-binding protein to distinct classes of RNA granules. J Biol Chem 283 32131 32142
70. FabianMR
MathonnetG
SundermeierT
MathysH
ZipprichJT
SvitkinYV
RivasF
JinekM
WohlschlegelJ
DoudnaJA
ChenCY
ShyuAB
YatesJR3rd
HannonGJ
FilipowiczW
DuchaineTF
SonenbergN
2009 Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation. Mol Cell 35(6) 868 80
71. StoicaC
CarmichaelJB
ParkerH
PareJ
HobmanTC
2006 Interactions between the RNA interference effector protein Ago1 and 14-3-3 proteins: consequences for cell cycle progression. J Biol Chem 281 37646 37651
72. KatoH
GotoDB
MartienssenRA
UranoT
FurukawaK
2005 RNA polymerase II is required for RNAi-dependent heterochromatin assembly. Science 309 467 469
73. FischerT
CuiB
DhakshnamoorthyJ
ZhouM
RubinC
ZofallM
VeenstraTD
GrewalSI
2009 Diverse roles of HP1 proteins in heterochromatin assembly and functions in fission yeast. Proc Natl Acad Sci U S A 106 8998 9003
74. WhiteSA
AllshireRC
2008 RNAi-mediated chromatin silencing in fission yeast. Curr Top Microbiol Immunol 320 157 183
75. SaksoukN
BhattiMM
KiefferS
SmithAT
MussetK
2005 Histone-modifying complexes regulate gene expression pertinent to the differentiation of the protozoan parasite Toxoplasma gondii. Mol Cell Biol 25 10301 10314
76. BougdourA
MaubonD
BaldacciP
OrtetP
BastienO
2009 Drug inhibition of HDAC3 and epigenetic control of differentiation in Apicomplexa parasites. J Exp Med 206 953 966
77. SautelCF
CannellaD
BastienO
KiefferS
AldebertD
2007 SET8-mediated methylations of histone H4 lysine 20 mark silent heterochromatic domains in apicomplexan genomes. Mol Cell Biol 27 5711 5724
78. BraunL
CannellaD
PinheiroAM
KiefferS
BelrhaliH
GarinJ
HakimiMA
2009 The small ubiquitin-like modifier (SUMO)-conjugating system of Toxoplasma gondii. Int J Parasitol 39 81 90
79. SautelCF
OrtetP
SaksoukN
KiefferS
GarinJ
2009 The histone methylase KMTox interacts with the redox-sensor peroxiredoxin-1 and targets genes involved in Toxoplasma gondii antioxidant defences. Mol Microbiol 71 212 226
80. HofackerIL
FontanaW
StadlerPF
BonhoefferLS
TackerM
1994 Fast folding and comparison of RNA secondary structures. Monatshefte für Chemie 125 167 188
81. ZukerM
2003 Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31 3406 3415
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2010 Číslo 5
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Quorum Sensing Inhibition Selects for Virulence and Cooperation in
- The Role of Intestinal Microbiota in the Development and Severity of Chemotherapy-Induced Mucositis
- Susceptibility to Anthrax Lethal Toxin-Induced Rat Death Is Controlled by a Single Chromosome 10 Locus That Includes
- Demonstration of Cross-Protective Vaccine Immunity against an Emerging Pathogenic Ebolavirus Species