as an Animal Model for the Study of Biofilm Infections
Pseudomonas aeruginosa is an opportunistic pathogen capable of causing both acute and chronic infections in susceptible hosts. Chronic P. aeruginosa infections are thought to be caused by bacterial biofilms. Biofilms are highly structured, multicellular, microbial communities encased in an extracellular matrix that enable long-term survival in the host. The aim of this research was to develop an animal model that would allow an in vivo study of P. aeruginosa biofilm infections in a Drosophila melanogaster host. At 24 h post oral infection of Drosophila, P. aeruginosa biofilms localized to and were visualized in dissected Drosophila crops. These biofilms had a characteristic aggregate structure and an extracellular matrix composed of DNA and exopolysaccharide. P. aeruginosa cells recovered from in vivo grown biofilms had increased antibiotic resistance relative to planktonically grown cells. In vivo, biofilm formation was dependent on expression of the pel exopolysaccharide genes, as a pelB::lux mutant failed to form biofilms. The pelB::lux mutant was significantly more virulent than PAO1, while a hyperbiofilm strain (PAZHI3) demonstrated significantly less virulence than PAO1, as indicated by survival of infected flies at day 14 postinfection. Biofilm formation, by strains PAO1 and PAZHI3, in the crop was associated with induction of diptericin, cecropin A1 and drosomycin antimicrobial peptide gene expression 24 h postinfection. In contrast, infection with the non-biofilm forming strain pelB::lux resulted in decreased AMP gene expression in the fly. In summary, these results provide novel insights into host-pathogen interactions during P. aeruginosa oral infection of Drosophila and highlight the use of Drosophila as an infection model that permits the study of P. aeruginosa biofilms in vivo.
Vyšlo v časopise:
as an Animal Model for the Study of Biofilm Infections. PLoS Pathog 7(10): e32767. doi:10.1371/journal.ppat.1002299
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1002299
Souhrn
Pseudomonas aeruginosa is an opportunistic pathogen capable of causing both acute and chronic infections in susceptible hosts. Chronic P. aeruginosa infections are thought to be caused by bacterial biofilms. Biofilms are highly structured, multicellular, microbial communities encased in an extracellular matrix that enable long-term survival in the host. The aim of this research was to develop an animal model that would allow an in vivo study of P. aeruginosa biofilm infections in a Drosophila melanogaster host. At 24 h post oral infection of Drosophila, P. aeruginosa biofilms localized to and were visualized in dissected Drosophila crops. These biofilms had a characteristic aggregate structure and an extracellular matrix composed of DNA and exopolysaccharide. P. aeruginosa cells recovered from in vivo grown biofilms had increased antibiotic resistance relative to planktonically grown cells. In vivo, biofilm formation was dependent on expression of the pel exopolysaccharide genes, as a pelB::lux mutant failed to form biofilms. The pelB::lux mutant was significantly more virulent than PAO1, while a hyperbiofilm strain (PAZHI3) demonstrated significantly less virulence than PAO1, as indicated by survival of infected flies at day 14 postinfection. Biofilm formation, by strains PAO1 and PAZHI3, in the crop was associated with induction of diptericin, cecropin A1 and drosomycin antimicrobial peptide gene expression 24 h postinfection. In contrast, infection with the non-biofilm forming strain pelB::lux resulted in decreased AMP gene expression in the fly. In summary, these results provide novel insights into host-pathogen interactions during P. aeruginosa oral infection of Drosophila and highlight the use of Drosophila as an infection model that permits the study of P. aeruginosa biofilms in vivo.
Zdroje
1. YahrTLGreenbergEP 2004 The genetic basis for the commitment to chronic versus acute infection in Pseudomonas aeruginosa. Mol Cell 16 497 498
2. ParsekMRSinghPK 2003 Bacterial biofilms: An emerging link to disease pathogenesis. Annu Rev Microbiol 57 677 701
3. Moreau-MarquisSStantonBAO'TooleGA 2008 Pseudomonas aeruginosa biofilm formation in the cystic fibrosis airway. Pulm Pharmacol Ther 21 595 9
4. MulcahyHCharron-MazenodLLewenzaS 2008 Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathog 4 e1000213
5. WhitchurchCBTolker-NielsenTRagasPCMattickJS 2002 Extracellular DNA required for bacterial biofilm formation. Science 295 1487
6. RyderCByrdMWozniakDJ 2007 Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr Opin Microbiol 10 644 648
7. SutherlandIW 2001 The biofilm matrix–an immobilized but dynamic microbial environment. Trends Microbiol 9 222 227
8. DaviesD 2003 Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2 114 122
9. CostertonJWStewartPSGreenbergEP 1999 Bacterial biofilms: A common cause of persistent infections. Science 284 1318 1322
10. DaveyMEO'tooleGA 2000 Microbial biofilms: From ecology to molecular genetics. Microbiol Mol Biol Rev 64 847 867
11. RahmeLGStevensEJWolfortSFShaoJTompkinsRG 1995 Common virulence factors for bacterial pathogenicity in plants and animals. Science 268 1899 1902
12. RahmeLGTanMWLeLWongSMTompkinsRG 1997 Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors. Proc Natl Acad Sci U S A 94 13245 13250
13. Mahajan-MiklosSTanMWRahmeLGAusubelFM 1999 Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa -Caenorhabditis elegans pathogenesis model. Cell 96 47 56
14. ComolliJCHauserARWaiteLWhitchurchCBMattickJS 1999 Pseudomonas aeruginosa gene products PilT and PilU are required for cytotoxicity in vitro and virulence in a mouse model of acute pneumonia. Infect Immun 67 3625 3630
15. van HeeckerenAMSchluchterMD 2002 Murine models of chronic Pseudomonas aeruginosa lung infection. Lab Anim 36 291 312
16. KimDHFeinbaumRAlloingGEmersonFEGarsinDA 2002 A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science 297 623 626
17. CossonPZulianelloLJoin-LambertOFaurissonFGebbieL 2002 Pseudomonas aeruginosa virulence analyzed in a Dictyostelium discoideum host system. J Bacteriol 184 3027 3033
18. KurzCLEwbankJJ 2007 Infection in a dish: High-throughput analyses of bacterial pathogenesis. Curr Opin Microbiol 10 10 16
19. Kukavica-IbruljIBragonziAParoniMWinstanleyCSanschagrinF 2008 In vivo growth of Pseudomonas aeruginosa strains PAO1 and PA14 and the hypervirulent strain LESB58 in a rat model of chronic lung infection. J Bacteriol 190 2804 2813
20. D'ArgenioDAGallagherLABergCAManoilC 2001 Drosophila as a model host for Pseudomonas aeruginosa infection. J Bacteriol 183 1466 1471
21. ChuganiSAWhiteleyMLeeKMD'ArgenioDManoilC 2001 QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 98 2752 2757
22. EricksonDLLinesJLPesciECVenturiVStoreyDG 2004 Pseudomonas aeruginosa relA contributes to virulence in Drosophila melanogaster. Infect Immun 72 5638 5645
23. SalunkhePSmartCHMorganJAPanageaSWalshawMJ 2005 A cystic fibrosis epidemic strain of Pseudomonas aeruginosa displays enhanced virulence and antimicrobial resistance. J Bacteriol 187 4908 4920
24. ApidianakisYMindrinosMNXiaoWLauGWBaldiniRL 2005 Profiling early infection responses: Pseudomonas aeruginosa eludes host defenses by suppressing antimicrobial peptide gene expression. Proc Natl Acad Sci U S A 102 2573 2578
25. SibleyCDDuanKFischerCParkinsMDStoreyDG 2008 Discerning the complexity of community interactions using a Drosophila model of polymicrobial infections. PLoS Pathog 4 e1000184
26. LutterEIFariaMMRabinHRStoreyDG 2008 Pseudomonas aeruginosa cystic fibrosis isolates from individual patients demonstrate a range of levels of lethality in two Drosophila melanogaster infection models. Infect Immun 76 1877 1888
27. ApidianakisYRahmeLG 2009 Drosophila melanogaster as a model host for studying Pseudomonas aeruginosa infection. Nat Protoc 4 1285 1294
28. LemaitreBHoffmannJ 2007 The host defense of Drosophila melanogaster. Annu Rev Immunol 25 697 743
29. KylstenPSamakovlisCHultmarkD 1990 The cecropin locus in Drosophila; a compact gene cluster involved in the response to infection. EMBO J 9 217 224
30. WickerCReichhartJMHoffmannDHultmarkDSamakovlisC 1990 Insect immunity. characterization of a Drosophila cDNA encoding a novel member of the diptericin family of immune peptides. J Biol Chem 265 22493 22498
31. BuletPDimarcqJLHetruCLagueuxMCharletM 1993 A novel inducible antibacterial peptide of Drosophila carries an O-glycosylated substitution. J Biol Chem 268 14893 14897
32. DimarcqJLHoffmannDMeisterMBuletPLanotR 1994 Characterization and transcriptional profiles of a Drosophila gene encoding an insect defensin. A study in insect immunity. Eur J Biochem 221 201 209
33. FehlbaumPBuletPMichautLLagueuxMBroekaertWF 1994 Insect immunity. Septic injury of Drosophila induces the synthesis of a potent antifungal peptide with sequence homology to plant antifungal peptides. J Biol Chem 269 33159 33163
34. LevashinaEAOhresserSBuletPReichhartJMHetruC 1995 Metchnikowin, a novel immune-inducible proline-rich peptide from Drosophila with antibacterial and antifungal properties. Eur J Biochem 233 694 700
35. AslingBDushayMSHultmarkD 1995 Identification of early genes in the Drosophila immune response by PCR-based differential display: The attacin A gene and the evolution of attacin-like proteins. Insect Biochem Mol Biol 25 511 518
36. LeulierFParquetCPili-FlourySRyuJHCaroffM 2003 The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nat Immunol 4 478 484
37. LevashinaEAOhresserSLemaitreBImlerJL 1998 Two distinct pathways can control expression of the gene encoding the Drosophila antimicrobial peptide metchnikowin. J Mol Biol 278 515 527
38. De GregorioESpellmanPTTzouPRubinGMLemaitreB 2002 The toll and imd pathways are the major regulators of the immune response in Drosophila. EMBO J 21 2568 2579
39. TanjiTHuXWeberANIpYT 2007 Toll and IMD pathways synergistically activate an innate immune response in Drosophila melanogaster. Mol Cell Biol 27 4578 4588
40. ChatterjeeMIpYT 2009 Pathogenic stimulation of intestinal stem cell response in Drosophila. J Cell Physiol 220 664 671
41. ApidianakisYPitsouliCPerrimonNRahmeL 2009 Synergy between bacterial infection and genetic predisposition in intestinal dysplasia. Proc Natl Acad Sci U S A 106 20883 20888
42. LewenzaSMhlangaMMPugsleyAP 2008 Novel inner membrane retention signals in Pseudomonas aeruginosa lipoproteins. J Bacteriol 190 6119 6125
43. MaLLuHSprinkleAParsekMRWozniakDJ 2007 Pseudomonas aeruginosa psl is a galactose- and mannose-rich exopolysaccharide. J Bacteriol 189 8353 8356
44. SchaudinnCStoodleyPKainovicAOkeeffeTCostertonB 2007 Bacterial biofilms, other structures seen as mainstream concepts. Microbe 2 231 6
45. RinaudiLVGonzalezJE 2009 The low-molecular-weight fraction of exopolysaccharide II from Sinorhizobium meliloti is a crucial determinant of biofilm formation. J Bacteriol 191 7216 7224
46. RussoDMWilliamsAEdwardsAPosadasDMFinnieC 2006 Proteins exported via the PrsD-PrsE type I secretion system and the acidic exopolysaccharide are involved in biofilm formation by Rhizobium leguminosarum. J Bacteriol 188 4474 4486
47. PearceP 1978 Structure in nature is a strategy for design. Cambridge MIT Press 245
48. GoodmanALMerighiMHyodoMVentreIFillouxA 2009 Direct interaction between sensor kinase proteins mediates acute and chronic disease phenotypes in a bacterial pathogen. Genes Dev 23 249 259
49. CaiazzaNCMerrittJHBrothersKMO'TooleGA 2007 Inverse regulation of biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J Bacteriol 189 3603 3612
50. MulcahyHO'CallaghanJO'GradyEPMaciaMDBorrellN 2008 Pseudomonas aeruginosa RsmA plays an important role during murine infection by influencing colonization, virulence, persistence, and pulmonary inflammation. Infect Immun 76 632 638
51. VasseurPVallet-GelyISosciaCGeninSFillouxA 2005 The pel genes of the Pseudomonas aeruginosa PAK strain are involved at early and late stages of biofilm formation. Microbiology 151 985 997
52. FriedmanLKolterR 2004 Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J Bacteriol 186 4457 4465
53. MatsukawaMGreenbergEP 2004 Putative exopolysaccharide synthesis genes influence Pseudomonas aeruginosa biofilm development. J Bacteriol 186 4449 4456
54. ZhangLDhillonPYanHFarmerSHancockRE 2000 Interactions of bacterial cationic peptide antibiotics with outer and cytoplasmic membranes of Pseudomonas aeruginosa. Antimicrob Agents Chemother 44 3317 3321
55. CeriHOlsonMEStremickCReadRRMorckD 1999 The calgary biofilm device: New technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37 1771 1776
56. ColvinKMGordonVDMurakamiKBorleeBRWozniakDJ 2011 The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathog 7 e1001264
57. BrencicALoryS 2009 Determination of the regulon and identification of novel mRNA targets of Pseudomonas aeruginosa RsmA. Mol Microbiol 72 612 632
58. MulcahyHO'CallaghanJO'GradyEPAdamsCO'GaraF 2006 The posttranscriptional regulator RsmA plays a role in the interaction between Pseudomonas aeruginosa and human airway epithelial cells by positively regulating the type III secretion system. Infect Immun 74 3012 3015
59. BurrowesEBaysseCAdamsCO'GaraF 2006 Influence of the regulatory protein RsmA on cellular functions in Pseudomonas aeruginosa PAO1, as revealed by transcriptome analysis. Microbiology 152 405 418
60. HeurlierKWilliamsFHeebSDormondCPessiG 2004 Positive control of swarming, rhamnolipid synthesis, and lipase production by the posttranscriptional RsmA/RsmZ system in Pseudomonas aeruginosa PAO1. J Bacteriol 186 2936 2945
61. PessiGWilliamsFHindleZHeurlierKHoldenMT 2001 The global posttranscriptional regulator RsmA modulates production of virulence determinants and N-acylhomoserine lactones in Pseudomonas aeruginosa. J Bacteriol 183 6676 6683
62. RyuJHKimSHLeeHYBaiJYNamYD 2008 Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Science 319 777 782
63. RiedelCUCaseyPGMulcahyHO'GaraFGahanCG 2007 Construction of p16Slux, a novel vector for improved bioluminescent labeling of gram-negative bacteria. Appl Environ Microbiol 73 7092 7095
64. LemaitreBNicolasEMichautLReichhartJMHoffmannJA 1996 The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86 973 983
65. HedengrenMAslingBDushayMSAndoIEkengrenS 1999 Relish, a central factor in the control of humoral but not cellular immunity in Drosophila Mol Cell 4 827 837
66. Hedengren-OlcottMOlcottMCMooneyDTEkengrenSGellerBL 2004 Differential activation of the NF-kappaB-like factors relish and dif in Drosophila melanogaster by fungi and gram-positive bacteria. J Biol Chem 279 21121 21127
67. AliagaLMediavillaJDCoboF 2002 A clinical index predicting mortality with Pseudomonas aeruginosa bacteraemia. J Med Microbiol 51 615 619
68. PoteraC 1999 Forging a link between biofilms and disease. Science 2831837, 1839
69. SadikotRTBlackwellTSChristmanJWPrinceAS 2005 Pathogen-host interactions in Pseudomonas aeruginosa pneumonia. Am J Respir Crit Care Med 171 1209 1223
70. IrazoquiJETroemelERFeinbaumRLLuhachackLGCezairliyanBO 2010 Distinct pathogenesis and host responses during infection of C. elegans by P P. aeruginosa aeruginosa and S. aureus. PLoS Pathog 6 e1000982
71. MeadCG 1964 A deoxyribonucleic acid-associated ribonucleic acid from Drosophila melanogaster. J Biol Chem 239 550 554
72. FrydmanMH 2006 Isolation of live bacteria from adult insects. Protocol Exchange doi:10.1038/nprot.2006.131
73. LiehlPBlightMVodovarNBoccardFLemaitreB 2006 Prevalence of local immune response against oral infection in a Drosophila/Pseudomonas infection model. PLoS Pathog 2 e56
74. LivakKJSchmittgenTD 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25 402 408
75. MaLJacksonKDLandryRMParsekMRWozniakDJ 2006 Analysis of Pseudomonas aeruginosa conditional psl variants reveals roles for the psl polysaccharide in adhesion and maintaining biofilm structure postattachment. J Bacteriol 188 8213 8221
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2011 Číslo 10
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Severe Acute Respiratory Syndrome Coronavirus Envelope Protein Regulates Cell Stress Response and Apoptosis
- The SARS-Coronavirus-Host Interactome: Identification of Cyclophilins as Target for Pan-Coronavirus Inhibitors
- Biochemical and Structural Insights into the Mechanisms of SARS Coronavirus RNA Ribose 2′-O-Methylation by nsp16/nsp10 Protein Complex
- Evolutionarily Divergent, Unstable Filamentous Actin Is Essential for Gliding Motility in Apicomplexan Parasites