Evolutionarily Divergent, Unstable Filamentous Actin Is Essential for Gliding Motility in Apicomplexan Parasites
Apicomplexan parasites rely on a novel form of actin-based motility called gliding, which depends on parasite actin polymerization, to migrate through their hosts and invade cells. However, parasite actins are divergent both in sequence and function and only form short, unstable filaments in contrast to the stability of conventional actin filaments. The molecular basis for parasite actin filament instability and its relationship to gliding motility remain unresolved. We demonstrate that recombinant Toxoplasma (TgACTI) and Plasmodium (PfACTI and PfACTII) actins polymerized into very short filaments in vitro but were induced to form long, stable filaments by addition of equimolar levels of phalloidin. Parasite actins contain a conserved phalloidin-binding site as determined by molecular modeling and computational docking, yet vary in several residues that are predicted to impact filament stability. In particular, two residues were identified that form intermolecular contacts between different protomers in conventional actin filaments and these residues showed non-conservative differences in apicomplexan parasites. Substitution of divergent residues found in TgACTI with those from mammalian actin resulted in formation of longer, more stable filaments in vitro. Expression of these stabilized actins in T. gondii increased sensitivity to the actin-stabilizing compound jasplakinolide and disrupted normal gliding motility in the absence of treatment. These results identify the molecular basis for short, dynamic filaments in apicomplexan parasites and demonstrate that inherent instability of parasite actin filaments is a critical adaptation for gliding motility.
Vyšlo v časopise:
Evolutionarily Divergent, Unstable Filamentous Actin Is Essential for Gliding Motility in Apicomplexan Parasites. PLoS Pathog 7(10): e32767. doi:10.1371/journal.ppat.1002280
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1002280
Souhrn
Apicomplexan parasites rely on a novel form of actin-based motility called gliding, which depends on parasite actin polymerization, to migrate through their hosts and invade cells. However, parasite actins are divergent both in sequence and function and only form short, unstable filaments in contrast to the stability of conventional actin filaments. The molecular basis for parasite actin filament instability and its relationship to gliding motility remain unresolved. We demonstrate that recombinant Toxoplasma (TgACTI) and Plasmodium (PfACTI and PfACTII) actins polymerized into very short filaments in vitro but were induced to form long, stable filaments by addition of equimolar levels of phalloidin. Parasite actins contain a conserved phalloidin-binding site as determined by molecular modeling and computational docking, yet vary in several residues that are predicted to impact filament stability. In particular, two residues were identified that form intermolecular contacts between different protomers in conventional actin filaments and these residues showed non-conservative differences in apicomplexan parasites. Substitution of divergent residues found in TgACTI with those from mammalian actin resulted in formation of longer, more stable filaments in vitro. Expression of these stabilized actins in T. gondii increased sensitivity to the actin-stabilizing compound jasplakinolide and disrupted normal gliding motility in the absence of treatment. These results identify the molecular basis for short, dynamic filaments in apicomplexan parasites and demonstrate that inherent instability of parasite actin filaments is a critical adaptation for gliding motility.
Zdroje
1. DubeyJP 2010 Toxoplasmosis of animals and humans Boca Raton CRC Press 313
2. MillerLHGoodMFMilonG 1994 Malaria pathogenesis. Science 264 1878 1883
3. SibleyLD 1995 Invasion of vertebrate cells by Toxoplasma gondii. Trends Cell Biol 5 129 132
4. RyningFWRemingtonJS 1978 Effect of cytochalasin D on Toxoplasma gondii cell entry. Infect Immun 20 739 743
5. DobrowolskiJMSibleyLD 1996 Toxoplasma invasion of mammalian cells is powered by the actin cytoskeleton of the parasite. Cell 84 933 939
6. HeintzelmanMB 2006 Cellular and molecular mechanics of gliding locomotion in eukaryotes. Int Rev Cytol 251 79 129
7. HåkanssonSMorisakiHHeuserJESibleyLD 1999 Time-lapse video microscopy of gliding motility in Toxoplasma gondii reveals a novel, biphasic mechanism of cell locomotion. Mol Biol Cell 10 3539 3547
8. VanderbergJP 1974 Studies on the motility of Plasmodium sporozoites. J Protozool 21 527 537
9. WetzelDMSchmidtJKuhlenschmidtMDubeyJPSibleyLD 2005 Gliding motility leads to active cellular invasion by Cryptosporidium parvum sporozoites. Infect Immun 73 5379 5387
10. RussellDGSindenRE 1981 The role of the cytoskeleton in the motility of coccidian sporozoites. J Cell Sci 50 345 359
11. KingCA 1981 Cell surface interaction of the protozoan Gregarina with Concanavalin A beads - implications for models of gregarine gliding. Cell Biol Intl Rep 5 297 305
12. SibleyLD 2010 How apicomplexan parasites move in and out of cells. Curr Opin Biotechnol 21 592 598
13. DobrowolskiJMNiesmanIRSibleyLD 1997 Actin in the parasite Toxoplasma gondii is encoded by a single copy gene, ACT1 and exists primarily in a globular form. Cell Motil Cytoskel 37 253 262
14. WesselingJGSmitsMASchoenmakers 1988 Extremely diverged actin proteins in Plasmodium falciparum. Mol Biochem Parasitol 30 143 154
15. WesselingJGSnijdersPJFvan SomerenPJansenJSmitsMA 1989 Stage-specific expression and genomic organization of the actin genes of the malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 35 167 176
16. SchmitzSGraingerMHowellSACalderLJGaebM 2005 Malaria parasite actin filaments are very short. J Mol Biol 349 113 125
17. WetzelDMHakanssonSHuKRoosDSibleyLD 2003 Actin filament polymerization regulates gliding motility by apicomplexan parasites. Mol Biol Cell 14 396 406
18. PollardTDBlanchoinLMullinsRD 2000 Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu Rev Biophys Biomol Struct 29 545 576
19. SchülerHMuellerAKMatuschewskiK 2005 Unusual properties of Plasmodium falciparum actin: new insights into microfilament dynamics of apicomplexan parasites. FEBS Letters 579 655 660
20. BaumJPapenfussATBaumBSpeedTPCowmanAF 2006 Regulation of apicomplexan actin-based motility. Nat Rev Microbiol 4 621 628
21. SchülerHMatuschewskiK 2006 Regulation of apicomplexan microfilament dynamics by minimal set of actin-binding proteins. Traffic 7 1433 1439
22. GordonJLSibleyLD 2005 Comparative genome analysis reveals a conserved family of actin-like proteins in apicomplexan parasites. BMC Genomics 6 e179
23. SahooNBeattyWLHeuserJESeptDSibleyLD 2006 Unusual kinetic and structural properties control rapid assembly and turnover of actin in the parasite Toxoplasma gondii. Mol Biol Cell 17 895 906
24. SchmitzSSchaapIAKleinjungJHarderSGraingerM 2010 Malaria parasite actin polymerisation and filament structure. J Biol Chem 285 36577 36585
25. CrewsPManesLVBoehlerM 1986 Jasplakinolide, a cyclodepsipeptide from the marine sponge, Jaspis spp. Tetrahedron Lett 27 2797 2800
26. PoupelOTardieuxI 1999 Toxoplasma gondii motility and host cell invasiveness are drastically impaired by jasplakinolide, a cyclic peptide stabilizing F-actin. Microbes Infect 1 653 662
27. MizunoYMakiokaAKawazuSKanoSKawaiS 2002 Effect of jasplakinolide on the growth, invasion, and actin cytoskeleton of Plasmodium falciparum. Parasitol Research 88 844 848
28. Siden-KiamosIPinderJCLouisC 2006 Involvement of actin and myosins in Plasmodium berghei ookinete motility. Mol Biochem Parasitol 150 308 317
29. SmytheWAJoinerKAHoppeHC 2008 Actin is required for endocytic trafficking in the malaria parasite Plasmodium falciparum. Cell Microbiol 10 452 464
30. ShawMKTilneyLG 1999 Induction of an acrosomal process in Toxoplasma gondii: visualization of actin filaments in a protozoan parasite. Proc Natl Acad Sci U S A 96 9095 9099
31. OdaTNambaKMaedaY 2005 Position and orientation of phalloidin in F-actin determined by X-Ray fiber diffraction analysis. Biophys J 88 2727 2736
32. OdaTIwasaMAiharaTMaedaYNaritaA 2009 The nature of the globular- to fibrous-actin transition. Nature 457 441 445
33. FaulstichHZobeleySHeintzDDrewesG 1993 Probing the phalloidin binding site of actin. FEBS Letters 318 218 222
34. SteinmetzMOStofflerDMüllerSAJahnWWolpensingerB 1998 Evaluating atomic models of F-actin with an undecagold-tagged phalloidin derivative. J Mol Biol 276 1 6
35. BelmontJDPattersonGMDrubinDG 1999 New actin mutants allow further characterization of the nucleotide binding cleft and drug binding sites. J Cell Sci 112 1325 1336
36. ChenXCookRKRubensteinPA 1993 Yeast actin with a mutation in the hydrophobic plug between subdomains 3 and 4 (L266D) displays a cold-sentitive polymerization defect. J Cell Biol 123 1185 1195
37. Herm-GotzAAgop-NersesianCMunterSGrimleyJSWandlessTJ 2007 Rapid control of protein level in the apicomplexan Toxoplasma gondii. Nat Methods 4 1003 1005
38. BubbMRSpectorIBeyerBBFosenKM 2000 Effects of jasplakinolide on the kinetics of actin polymerization: an explanation for certain in vivo observations. J Biol Chem 275 5163 5170
39. McKaneMWenKKMeyerARubensteinPA 2006 Effect of the substitution of muscle actin-specific subdomain 1 and 2 residues in yeast actin on actin function. J Biol Chem 281 29916 29928
40. TiSCPollardTD 2011 Purification of actin from fission yeast Schizosaccharomyces pombe and characterization of functional differences from muscle actin. J Biol Chem 286 5784 5792
41. SchoenenbergerCABischlerNFahrenkrogBAebiU 2002 Actin's propensity for dynamic filament patterning. FEBS Letters 529 27 33
42. FujiiTIwaneAHYanagidaTNambaK 2010 Direct visualization of secondary structures of F-actin by electron cryomicroscopy. Nature 467 724 728
43. GalkinVEOrlovaASchroderGFEgelmanEH 2010 Structural polymorphism in F-actin. Nat Struct Mol Biol 17 1318 1323
44. KuangBRubensteinPA 1997 Beryllium fluoride and phalloidin retore polymerizability of a mutant yeast actin (V266G, L267G) with severely decreased hydrophobicty in a subdomain 3/4 loop. J Biol Chem 272 1237 1247
45. CowmanAFCrabbBS 2006 Invasion of red blood cells by malaria parasites. Cell 124 755 766
46. MunterSSabassBSelhuber-UnkelCKudryashevMHeggeS 2009 Plasmodium sporozoite motility is modulated by the turnover of discrete adhesion sites. Cell Host Microbe 6 551 562
47. HåkanssonSCharronAJSibleyLD 2001 Toxoplasma evacuoles: a two-step process of secretion and fusion forms the parasitophorous vacuole. Embo J 20 3132 3144
48. FrenalKSoldati-FavreD 2009 Role of the parasite and host cytoskeleton in apicomplexa parasitism. Cell Host Microbe 5 602 611
49. GaskinsEGilkSDeVoreNMannTWardGE 2004 Identification of the membrane receptor of a class XIV myosin Toxoplasma gondii. J Cell Biol 165 383 393
50. Herm-GotzAWeissSStratmannRFujita-BeckerSRuffC 2002 Toxoplasma gondii myosin A and its light chain: a fast, single-headed, plus-end-directed motor. Embo J 21 2149 2158
51. BaumJTonkinCJPaulASRugMSmithBJ 2008 A malaria parasite formin regulates actin polymerization and localizes to the parasite-erythrocyte moving junction during invasion. Cell Host Microbe 3 188 198
52. DaherWPlattnerFCarlierMFSoldati-FavreD 2010 Concerted action of two formins in gliding motility and host cell invasion by Toxoplasma gondii. PLoS Pathog 6 e1001132
53. MehtaSSibleyLD 2011 Actin depolymerizing factor controls actin turnover and gliding motility in Toxoplasma gondii. Molec Biol Cell 22 1290 1299
54. ShawMK 2003 Cell invasion by Theileria sporozoites. Trends Parasitol 19 2 6
55. MonteroERodriguezMOksovYLoboCA 2009 Babesia divergens apical membrane antigen 1 and its interaction with the human red blood cell. Infect Immun 77 4783 4793
56. KapoorPSahasrabuddheAAKumarAMitraKSiddiqiMI 2008 An unconventional form of actin in protozoan hemoflagellate, Leishmania. J Biol Chem 283 22760 22773
57. ParedezARAssafZJSeptDTimofejevaLDawsonSC 2011 An actin cytoskeleton with evolutionaryly conserved functions in the absence of cannonical actin-binding protiens. Proc Natl Acad Sci U S A 108 6151 6156
58. HironoMKamagaiYNumataOWatanabeY 1989 Purification of Tetrahymena actin reveals some unusual properties. Proc Natl Acad Sci U S A 86 75 79
59. OtterbeinLRGraceffaPDominguezR 2001 The crysal structure of uncomplexed actin in the ADP bound state. Science 293 708 711
60. Martí-RenomMAStuartACFiserASánchezRMeloF 2000 Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29 291 325
61. HumphreyWDalkeASchultenK 1996 VMD: visual modeling dynamics. Graph 14 33 38
62. ZanottiGFalcignoLSavianoMD'AuriaGBrunoBM 2001 Solid state and solution conformation of [Ala7]-phalloidin: a synthetic phallotoxin analogue. Chemistry 7 1479 1485
63. KaleLSkeelRBhandarkarMBrunnerRGursoyA 1999 NAMD2: Greater scalability for parallel molecular dynamics. J Comp Physics 151 283 312
64. MorrisGMGoodsellDSHallidayRSHueyRHartWE 1998 Automated docking using a Lamarkian genetic algorithm and emperical binding free energy function. J Comp Chem 19 1639 1662
65. MorisakiJHHeuserJESibleyLD 1995 Invasion of Toxoplasma gondii occurs by active penetration of the host cell. J Cell Sci 108 2457 2464
66. LouridoSShumanJZhangCShokatKMHuiR 2010 Calcium-dependent protein kinase 1 is an essential regulator of exocytosis in Toxoplasma. Nature 465 359 362
67. HigginsDGThompsonJDGibsonTJ 1996 Using CLUSTAL for multiple sequence alignments. Methods Enzymol 266 382 402
68. SwoffordDL 2002 Phylogenetic Analysis Using Parsimony (* and other methods) Sunderland Sinauer Associates
69. PageRD 2002 Visualizing phylogenetic trees using TreeView. Curr Protoc Bioinformatics Chapter 6 Unit 6 2
70. PondSLFrostSDMuseSV 2005 HyPhy: hypothesis testing using phylogenies. Bioinform 21 676 679
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2011 Číslo 10
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Severe Acute Respiratory Syndrome Coronavirus Envelope Protein Regulates Cell Stress Response and Apoptosis
- The SARS-Coronavirus-Host Interactome: Identification of Cyclophilins as Target for Pan-Coronavirus Inhibitors
- Biochemical and Structural Insights into the Mechanisms of SARS Coronavirus RNA Ribose 2′-O-Methylation by nsp16/nsp10 Protein Complex
- Evolutionarily Divergent, Unstable Filamentous Actin Is Essential for Gliding Motility in Apicomplexan Parasites