#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Mouse IAPE Endogenous Retrovirus Can Infect Cells through Any of the Five GPI-Anchored EphrinA Proteins


The IAPE (Intracisternal A-type Particles elements with an Envelope) family of murine endogenous retroelements is present at more than 200 copies in the mouse genome. We had previously identified a single copy that proved to be fully functional, i.e. which can generate viral particles budding out of the cell and infectious on a series of cells, including human cells. We also showed that IAPE are the progenitors of the highly reiterated IAP elements. The latter are now strictly intracellular retrotransposons, due to the loss of the envelope gene and re-localisation of the associated particles in the course of evolution. In the present study we searched for the cellular receptor of the IAPE elements, by using a lentiviral human cDNA library and a pseudotype assay on transduced cells. We identified Ephrin A4, a GPI-anchored molecule involved in several developmental processes, as a receptor for the IAPE pseudotypes. We also found that the other 4 members of the Ephrin A family –but not those of the closely related Ephrin B family- were also able to mediate IAPE cell entry, thus significantly increasing the amount of possible cell types susceptible to IAPE infection. We show that these include mouse germline cells, as illustrated by immunohistochemistry experiments, consistent with IAPE genomic amplification by successive re-infection. We propose that the uncovered properties of the identified receptors played a role in the accumulation of IAPE elements in the mouse genome, and in the survival of a functional copy.


Vyšlo v časopise: The Mouse IAPE Endogenous Retrovirus Can Infect Cells through Any of the Five GPI-Anchored EphrinA Proteins. PLoS Pathog 7(10): e32767. doi:10.1371/journal.ppat.1002309
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1002309

Souhrn

The IAPE (Intracisternal A-type Particles elements with an Envelope) family of murine endogenous retroelements is present at more than 200 copies in the mouse genome. We had previously identified a single copy that proved to be fully functional, i.e. which can generate viral particles budding out of the cell and infectious on a series of cells, including human cells. We also showed that IAPE are the progenitors of the highly reiterated IAP elements. The latter are now strictly intracellular retrotransposons, due to the loss of the envelope gene and re-localisation of the associated particles in the course of evolution. In the present study we searched for the cellular receptor of the IAPE elements, by using a lentiviral human cDNA library and a pseudotype assay on transduced cells. We identified Ephrin A4, a GPI-anchored molecule involved in several developmental processes, as a receptor for the IAPE pseudotypes. We also found that the other 4 members of the Ephrin A family –but not those of the closely related Ephrin B family- were also able to mediate IAPE cell entry, thus significantly increasing the amount of possible cell types susceptible to IAPE infection. We show that these include mouse germline cells, as illustrated by immunohistochemistry experiments, consistent with IAPE genomic amplification by successive re-infection. We propose that the uncovered properties of the identified receptors played a role in the accumulation of IAPE elements in the mouse genome, and in the survival of a functional copy.


Zdroje

1. BannertNKurthR 2004 Retroelements and the human genome: New perspectives on an old relation. Proc Natl Acad Sci U S A 101 14572 14579 Epub 12004 Aug 14513

2. de ParsevalNHeidmannT 2005 Human endogenous retroviruses: from infectious elements to human genes. Cytogenet Genome Res 110 318 332

3. GoodierJLKazazianHHJr 2008 Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell 135 23 35

4. BlondJLLavilletteDCheynetVBoutonOOriolG 2000 An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor. J Virol 74 3321 3329

5. MiSLeeXLiXVeldmanGFinnertyH 2000 Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 17 785 789

6. BlaiseSde parsevalNBénitLHeidmannT 2003 Genomewide screening for fusogenic human endogenous retrovirus envelopes identifies syncytin 2, a gene conserved on primate evolution. Proc Natl Acad Sci U S A 100 13013 13018

7. DupressoirAMarceauGVernochetCBénitLKanellopoulosC 2005 Syncytin-A end syncytin-B, two fusogenic placenta-specific murine envelope genes of retroviral origin conserved in Muridae. Proc Natl Acad Sci U S A 102 725 730

8. DupressoirAVernochetCBawaOHarperFPierronG 2009 Syncytin-A knockout mice demonstrate the critical role in placentation of a fusogenic, endogenous retrovirus-derived, envelope gene. Proc Natl Acad Sci U S A 106 12127 12132

9. StockingCKozakCA 2008 Murine endogenous retroviruses. Cell Mol Life Sci 65 3383 3398

10. RibetDHarperFDupressoirADewannieuxMPierronG 2008 An infectious progenitor for the murine IAP retrotransposon: emergence of an intracellular genetic parasite from an ancient retrovirus. Genome Res 18 597 609 Epub 2008 Feb 2006

11. RibetDHarperFDewannieuxMPierronGHeidmannT 2007 Murine MusD retrotransposon: structure and molecular evolution of an “intracellularized” retrovirus. J Virol 81 1888 1898

12. RibetDLouvet-ValleeSHarperFde ParsevalNDewannieuxM 2008 Murine endogenous retrovirus MuERV-L is the progenitor of the “orphan” epsilon viruslike particles of the early mouse embryo. J Virol 82 1622 1625 Epub 2007 Nov 1628

13. KveineMTenstadEDosenGFunderudSRianE 2002 Characterization of the novel human transmembrane protein 9 (TMEM9) that localizes to lysosomes and late endosomes. Biochem Biophys Res Commun 297 912 917

14. FlanaganJGVanderhaeghenP 1998 The ephrins and Eph receptors in neural development. Annu Rev Neurosci 21 309 345

15. PoliakovACotrinaMWilkinsonDG 2004 Diverse roles of eph receptors and ephrins in the regulation of cell migration and tissue assembly. Dev Cell 7 465 480

16. ManelNKinetSBattiniJLKimFJTaylorN 2003 The HTLV receptor is an early T-cell activation marker whose expression requires de novo protein synthesis. Blood 101 1913 1918 Epub 2002 Oct 1917

17. CheynetVOriolGMalletF 2006 Identification of the hASCT2-binding domain of the Env ERVWE1/syncytin-1 fusogenic glycoprotein. Retrovirology 3 41

18. AasheimHCMuntheEFunderudSSmelandEBBeiskeK 2000 A splice variant of human ephrin-A4 encodes a soluble molecule that is secreted by activated human B lymphocytes. Blood 95 221 230

19. RogersJHCiossekTMenzelPPasqualeEB 1999 Eph receptors and ephrins demarcate cerebellar lobules before and during their formation. Mech Dev 87 119 128

20. PitulescuMEAdamsRH 2010 Eph/ephrin molecules–a hub for signaling and endocytosis. Genes Dev 24 2480 2492

21. OverbaughJMillerADEidenMV 2001 Receptors and entry cofactors for retroviruses include single and multiple transmembrane-spanning proteins as well as newly described glycophosphatidylinositol-anchored and secreted proteins. Microbiol Mol Biol Rev 65 371 389

22. SommerfeltMA 1999 Retrovirus receptors. J Gen Virol 80 3049 3064

23. RossSRSchofieldJJFarrCJBucanM 2002 Mouse transferrin receptor 1 is the cell entry receptor for mouse mammary tumor virus. Proc Natl Acad Sci U S A 99 12386 12390 Epub 12002 Sep 12386

24. RaiS-KDuhF-MVigdorovichVDanilkovitch-MiagkovaALermanMI 2001 Candidate tumor suppressor HYAL2 is a glycosylphosphatidylinositol (GPI)-anchored cell-surface receptor for Jaagsiekte sheep retrovirus, the envelope protein of which mediates oncogenic transformation. Proc Natl Acad Sci U S A 98 4443 4448

25. BatesPYoungJAVarmusHE 1993 A receptor for subgroup A Rous sarcoma virus is related to the low density lipoprotein receptor. Cell 74 1043 1051

26. BenitLDessenPHeidmannT 2001 Identification, phylogeny, and evolution of retroviral elements based on their envelope genes. J Virol 75 11709 11719

27. KimFJBattiniJLManelNSitbonM 2004 Emergence of vertebrate retroviruses and envelope capture. Virology 318 183 191

28. NegreteOALevroneyELAguilarHCBertolotti-CiarletANazarianR 2005 EphrinB2 is the entry receptor for Nipah virus, an emergent deadly paramyxovirus. Nature 436 401 405

29. NegreteOAWolfMCAguilarHCEnterleinSWangW 2006 Two key residues in ephrinB3 are critical for its use as an alternative receptor for Nipah virus. PLoS Pathog 2 e7

30. KozakCA 2010 The mouse “xenotropic” gammaretroviruses and their XPR1 receptor. Retrovirology 7 101

31. DewannieuxMCollinsMK 2008 Spontaneous heteromerization of gammaretrovirus envelope proteins: a possible novel mechanism of retrovirus restriction. J Virol 82 9789 9794

32. ZuffereyRNagyDMandelRJNaldiniLTronoD 1997 Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15 871 875

33. DemaisonCParsleyKBrounsGScherrMBattmerK 2002 High-level transduction and gene expression in hematopoietic repopulating cells using a human immunodeficiency [correction of imunodeficiency] virus type 1-based lentiviral vector containing an internal spleen focus forming virus promoter. Hum Gene Ther 13 803 813

34. BerthouxLSebastianSSokolskajaELubanJ 2005 Cyclophilin A is required for TRIM5{alpha}-mediated resistance to HIV-1 in Old World monkey cells. Proc Natl Acad Sci U S A 102 14849 14853

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2011 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#