#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Fitness Landscape of Antibiotic Tolerance in Biofilms


Bacteria in biofilms have higher antibiotic tolerance than their planktonic counterparts. A major outstanding question is the degree to which the biofilm-specific cellular state and its constituent genetic determinants contribute to this hyper-tolerant phenotype. Here, we used genome-wide functional profiling of a complex, heterogeneous mutant population of Pseudomonas aeruginosa MPAO1 in biofilm and planktonic growth conditions with and without tobramycin to systematically quantify the contribution of each locus to antibiotic tolerance under these two states. We identified large sets of mutations that contribute to antibiotic tolerance predominantly in the biofilm or planktonic setting only, offering global insights into the differences and similarities between biofilm and planktonic antibiotic tolerance. Our mixed population-based experimental design recapitulated the complexity of natural biofilms and, unlike previous studies, revealed clinically observed behaviors including the emergence of quorum sensing-deficient mutants. Our study revealed a substantial contribution of the cellular state to the antibiotic tolerance of biofilms, providing a rational foundation for the development of novel therapeutics against P. aeruginosa biofilm-associated infections.


Vyšlo v časopise: Fitness Landscape of Antibiotic Tolerance in Biofilms. PLoS Pathog 7(10): e32767. doi:10.1371/journal.ppat.1002298
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1002298

Souhrn

Bacteria in biofilms have higher antibiotic tolerance than their planktonic counterparts. A major outstanding question is the degree to which the biofilm-specific cellular state and its constituent genetic determinants contribute to this hyper-tolerant phenotype. Here, we used genome-wide functional profiling of a complex, heterogeneous mutant population of Pseudomonas aeruginosa MPAO1 in biofilm and planktonic growth conditions with and without tobramycin to systematically quantify the contribution of each locus to antibiotic tolerance under these two states. We identified large sets of mutations that contribute to antibiotic tolerance predominantly in the biofilm or planktonic setting only, offering global insights into the differences and similarities between biofilm and planktonic antibiotic tolerance. Our mixed population-based experimental design recapitulated the complexity of natural biofilms and, unlike previous studies, revealed clinically observed behaviors including the emergence of quorum sensing-deficient mutants. Our study revealed a substantial contribution of the cellular state to the antibiotic tolerance of biofilms, providing a rational foundation for the development of novel therapeutics against P. aeruginosa biofilm-associated infections.


Zdroje

1. Hall-StoodleyLCostertonJWStoodleyP 2004 Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2 95 108

2. DaviesD 2003 Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2 114 122

3. KimJHahnJSFranklinMJStewartPSYoonJ 2009 Tolerance of dormant and active cells in Pseudomonas aeruginosa PA01 biofilm to antimicrobial agents. J Antimicrob Chemother 63 129 135

4. CeriHOlsonMEStremickCReadRRMorckD 1999 The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37 1771 1776

5. CantinA 1995 Cystic fibrosis lung inflammation: early, sustained, and severe. Am J Respir Crit Care Med 151 939 941

6. Navon-VeneziaSBen-AmiRCarmeliY 2005 Update on Pseudomonas aeruginosa and Acinetobacter baumannii infections in the healthcare setting. Curr Opin Infect Dis 18 306 313

7. SinghPKSchaeferALParsekMRMoningerTOWelshMJ 2000 Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407 762 764

8. GellerDERosenfeldMWaltzDAWilmottRW 2003 Efficiency of pulmonary administration of tobramycin solution for inhalation in cystic fibrosis using an improved drug delivery system. Chest 123 28 36

9. PaiVBNahataMC 2001 Efficacy and safety of aerosolized tobramycin in cystic fibrosis. Pediatr Pulmonol 32 314 327

10. RamseyBWPepeMSQuanJMOttoKLMontgomeryAB 1999 Intermittent administration of inhaled tobramycin in patients with cystic fibrosis. Cystic Fibrosis Inhaled Tobramycin Study Group. N Engl J Med 340 23 30

11. SchurekKNMarrAKTaylorPKWiegandISemenecL 2008 Novel genetic determinants of low-level aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 52 4213 4219

12. BryanLEKwanS 1981 Aminoglycoside-resistant mutants of Pseudomonas aeruginosa deficient in cytochrome d, nitrite reductase, and aerobic transport. Antimicrob Agents Chemother 19 958 964

13. BryanLENicasTHollowayBWCrowtherC 1980 Aminoglycoside-resistant mutation of Pseudomonas aeruginosa defective in cytochrome c552 and nitrate reductase. Antimicrob Agents Chemother 17 71 79

14. HoffmanLRD'ArgenioDAMacCossMJZhangZJonesRA 2005 Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436 1171 1175

15. BjarnsholtTJensenPOBurmolleMHentzerMHaagensenJA 2005 Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology 151 373 383

16. MahTFPittsBPellockBWalkerGCStewartPS 2003 A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426 306 310

17. DrenkardEAusubelFM 2002 Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416 740 743

18. ZhangLMahTF 2008 Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. J Bacteriol 190 4447 4452

19. ColvinKMGordonVDMurakamiKBorleeBRWozniakDJ 2011 The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathog 7 e1001264

20. HocquetDVogneCEl GarchFVejuxAGotohN 2003 MexXY-OprM efflux pump is necessary for a adaptive resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents Chemother 47 1371 1375

21. KhanWBernierSPKuchmaSLHammondJHHasanF 2010 Aminoglycoside resistance of Pseudomonas aeruginosa biofilms modulated by extracellular polysaccharide. Int Microbiol 13 207 212

22. LeeSHinzABauerleEAngermeyerAJuhaszovaK 2009 Targeting a bacterial stress response to enhance antibiotic action. Proc Natl Acad Sci U S A 106 14570 14575

23. GirgisHSLiuYRyuWSTavazoieS 2007 A comprehensive genetic characterization of bacterial motility. PLoS Genet 3 1644 1660

24. CabrolSOlliverAPierGBAndremontARuimyR 2003 Transcription of quorum-sensing system genes in clinical and environmental isolates of Pseudomonas aeruginosa. J Bacteriol 185 7222 7230

25. GoodarziHElementoOTavazoieS 2009 Revealing global regulatory perturbations across human cancers. Mol Cell 36 900 911

26. KohanskiMADwyerDJHayeteBLawrenceCACollinsJJ 2007 A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130 797 810

27. GirgisHSHottesAKTavazoieS 2009 Genetic architecture of intrinsic antibiotic susceptibility. PLoS One 4 e5629

28. MattickJS 2002 Type IV pili and twitching motility. Annu Rev Microbiol 56 289 314

29. KlausenMHeydornARagasPLambertsenLAaes-JorgensenA 2003 Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48 1511 1524

30. SinghPKParsekMRGreenbergEPWelshMJ 2002 A component of innate immunity prevents bacterial biofilm development. Nature 417 552 555

31. O'TooleGAKolterR 1998 Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30 295 304

32. KlausenMAaes-JorgensenAMolinSTolker-NielsenT 2003 Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol Microbiol 50 61 68

33. MacnabRM 1996 Flagella and motility. NeidhardtFCCurtissRIngrahamJLLinECCLowKB Escherichia coli and Salmonella: Cellular and molecular biology. Washington, D.C. American Society for Microbiology Press 123 145 2nd ed

34. SauerKCullenMCRickardAHZeefLADaviesDG 2004 Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J Bacteriol 186 7312 7326

35. JacobsMAAlwoodAThaipisuttikulISpencerDHaugenE 2003 Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 100 14339 14344

36. KohlerTMichea-HamzehpourMHenzeUGotohNCurtyLK 1997 Characterization of MexE-MexF-OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa. Mol Microbiol 23 345 354

37. KohlerTEppSFCurtyLKPechereJC 1999 Characterization of MexT, the regulator of the MexE-MexF-OprN multidrug efflux system of Pseudomonas aeruginosa. J Bacteriol 181 6300 6305

38. MuirMEvan HeeswyckRSWallaceBJ 1984 Effect of growth rate on streptomycin accumulation by Escherichia coli and Bacillus megaterium. J Gen Microbiol 130 2015 2022

39. MwangiMMWuSWZhouYSieradzkiKde LencastreH 2007 Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing. Proc Natl Acad Sci U S A 104 9451 9456

40. LohBGrantCHancockRE 1984 Use of the fluorescent probe 1-N-phenylnaphthylamine to study the interactions of aminoglycoside antibiotics with the outer membrane of Pseudomonas aeruginosa. Antimicrob Agents Chemother 26 546 551

41. SandozKMMitzimbergSMSchusterM 2007 Social cheating in Pseudomonas aeruginosa quorum sensing. Proc Natl Acad Sci U S A 104 15876 15881

42. LeeHHMollaMNCantorCRCollinsJJ 2010 Bacterial charity work leads to population-wide resistance. Nature 467 82 85

43. BorleeBRGoldmanADMurakamiKSamudralaRWozniakDJ 2010 Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol Microbiol 75 827 842

44. BrazasMDHancockRE 2005 Ciprofloxacin induction of a susceptibility determinant in Pseudomonas aeruginosa. Antimicrob Agents Chemother 49 3222 3227

45. NewmanJRFuquaC 1999 Broad-host-range expression vectors that carry the L-arabinose-inducible Escherichia coli araBAD promoter and the araC regulator. Gene 227 197 203

46. WongKRHughesCKoronakisV 1998 A gene, yaeQ, that suppresses reduced operon expression caused by mutations in the transcription elongation gene rfaH in Escherichia coli and Salmonella typhimurium. Mol Gen Genet 257 693 696

47. VicariDArtsimovitchI 2004 Virulence regulators RfaH and YaeQ do not operate in the same pathway. Mol Genet Genomics 272 489 496

48. PlattMDSchurrMJSauerKVazquezGKukavica-IbruljI 2008 Proteomic, microarray, and signature-tagged mutagenesis analyses of anaerobic Pseudomonas aeruginosa at pH 6.5, likely representing chronic, late-stage cystic fibrosis airway conditions. J Bacteriol 190 2739 2758

49. KirisitsMJProstLStarkeyMParsekMR 2005 Characterization of colony morphology variants isolated from Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 71 4809 4821

50. ConibearTCCollinsSLWebbJS 2009 Role of mutation in Pseudomonas aeruginosa biofilm development. PLoS One 4 e6289

51. OliverACantonRCampoPBaqueroFBlazquezJ 2000 High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288 1251 1254

52. ChoiKHSchweizerHP 2006 mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa. Nat Protoc 1 153 161

53. TroyanskayaOCantorMSherlockGBrownPHastieT 2001 Missing value estimation methods for DNA microarrays. Bioinformatics 17 520 525

54. EisenMBSpellmanPTBrownPOBotsteinD 1998 Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95 14863 14868

55. RomeroPKarpP 2003 PseudoCyc, a pathway-genome database for Pseudomonas aeruginosa. J Mol Microbiol Biotechnol 5 230 239

56. McCarthyFMWangNMageeGBNanduriBLawrenceML 2006 AgBase: a functional genomics resource for agriculture. BMC Genomics 7 229

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2011 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#