A Gatekeeper Chaperone Complex Directs Translocator Secretion during Type Three Secretion
Type Three Secretion Systems (T3SS) are essential virulence factors found in many pathogenic Gram-negative bacteria. These machines aid infection by delivering bacterial proteins into host cells where these proteins modulate host processes and help establish a niche for the bacteria. Protein delivery occurs in a highly regulated manner in which proteins involved in early steps in infection, or necessary to build the secretion conduit, are typically secreted before other substrates, a phenomenon termed secretion hierarchy. This study presents the structure of a molecular complex that physically links one class of early substrates, components of the secretion pore termed translocators, to a gatekeeper protein, a protein that has been implicated in the secretion hierarchy. Disruption of this interaction in Shigella disrupts the secretion of translocators, while supporting increased secretion of effectors, resulting in phenotypes indistinguishable from a gatekeeper deletion, and leading to the conclusion that a gatekeeper-chaperone-translocator complex is a critical component of the T3SS.
Vyšlo v časopise:
A Gatekeeper Chaperone Complex Directs Translocator Secretion during Type Three Secretion. PLoS Pathog 10(11): e32767. doi:10.1371/journal.ppat.1004498
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004498
Souhrn
Type Three Secretion Systems (T3SS) are essential virulence factors found in many pathogenic Gram-negative bacteria. These machines aid infection by delivering bacterial proteins into host cells where these proteins modulate host processes and help establish a niche for the bacteria. Protein delivery occurs in a highly regulated manner in which proteins involved in early steps in infection, or necessary to build the secretion conduit, are typically secreted before other substrates, a phenomenon termed secretion hierarchy. This study presents the structure of a molecular complex that physically links one class of early substrates, components of the secretion pore termed translocators, to a gatekeeper protein, a protein that has been implicated in the secretion hierarchy. Disruption of this interaction in Shigella disrupts the secretion of translocators, while supporting increased secretion of effectors, resulting in phenotypes indistinguishable from a gatekeeper deletion, and leading to the conclusion that a gatekeeper-chaperone-translocator complex is a critical component of the T3SS.
Zdroje
1. CornelisGR (2002) Yersinia type III secretion: send in the effectors. J Cell Biol 158: 401–408.
2. CornelisGR (2006) The type III secretion injectisome. Nat Rev Microbiol 4: 811–825.
3. GalanJE, Wolf-WatzH (2006) Protein delivery into eukaryotic cells by type III secretion machines. Nature 444: 567–573.
4. GalanJE, CossartP (2005) Host-pathogen interactions: a diversity of themes, a variety of molecular machines. Curr Opin Microbiol 8: 1–3.
5. HodgkinsonJL, HorsleyA, StabatD, SimonM, JohnsonS, et al. (2009) Three-dimensional reconstruction of the Shigella T3SS transmembrane regions reveals 12-fold symmetry and novel features throughout. Nat Struct Mol Biol 16: 477–485.
6. AbrusciP, Vergara-IrigarayM, JohnsonS, BeebyMD, HendrixsonDR, et al. (2013) Architecture of the major component of the type III secretion system export apparatus. Nat Struct Mol Biol 20: 99–104.
7. DeaneJE, AbrusciP, JohnsonS, LeaSM (2010) Timing is everything: the regulation of type III secretion. Cell Mol Life Sci 67: 1065–1075.
8. StammLM, GoldbergMB (2011) Microbiology. Establishing the secretion hierarchy. Science 331: 1147–1148.
9. ParsotC, HamiauxC, PageAL (2003) The various and varying roles of specific chaperones in type III secretion systems. Curr Opin Microbiol 6: 7–14.
10. StebbinsCE, GalanJE (2001) Maintenance of an unfolded polypeptide by a cognate chaperone in bacterial type III secretion. Nature 414: 77–81.
11. BirtalanSC, PhillipsRM, GhoshP (2002) Three-dimensional secretion signals in chaperone-effector complexes of bacterial pathogens. Mol Cell 9: 971–980.
12. ButtnerCR, SorgI, CornelisGR, HeinzDW, NiemannHH (2008) Structure of the Yersinia enterocolitica type III secretion translocator chaperone SycD. J Mol Biol 375: 997–1012.
13. LunelliM, LokareddyRK, ZychlinskyA, KolbeM (2009) IpaB-IpgC interaction defines binding motif for type III secretion translocator. Proc Natl Acad Sci U S A 106: 9661–9666.
14. JobV, MatteiPJ, LemaireD, AttreeI, DessenA (2010) Structural basis of chaperone recognition of type III secretion system minor translocator proteins. J Biol Chem 285: 23224–23232.
15. IriarteM, SoryMP, BolandA, BoydAP, MillsSD, et al. (1998) TyeA, a protein involved in control of Yop release and in translocation of Yersinia Yop effectors. EMBO J 17: 1907–1918.
16. JosephSS, PlanoGV (2007) Identification of TyeA residues required to interact with YopN and to regulate Yop secretion. Adv Exp Med Biol 603: 235–245.
17. KuboriT, GalanJE (2002) Salmonella type III secretion-associated protein InvE controls translocation of effector proteins into host cells. J Bacteriol 184: 4699–4708.
18. Martinez-ArgudoI, BlockerAJ (2010) The Shigella T3SS needle transmits a signal for MxiC release, which controls secretion of effectors. Mol Microbiol 78: 1365–1378.
19. O'ConnellCB, CreaseyEA, KnuttonS, ElliottS, CrowtherLJ, et al. (2004) SepL, a protein required for enteropathogenic Escherichia coli type III translocation, interacts with secretion component SepD. Mol Microbiol 52: 1613–1625.
20. PallenMJ, BeatsonSA, BaileyCM (2005) Bioinformatics analysis of the locus for enterocyte effacement provides novel insights into type-III secretion. BMC Microbiol 5: 9.
21. FerracciF, DayJB, EzelleHJ, PlanoGV (2004) Expression of a functional secreted YopN-TyeA hybrid protein in Yersinia pestis is the result of a +1 translational frameshift event. J Bacteriol 186: 5160–5166.
22. SpaethKE, ChenYS, ValdiviaRH (2009) The Chlamydia type III secretion system C-ring engages a chaperone-effector protein complex. PLoS Pathog 5: e1000579.
23. SlepenkinA, de la MazaLM, PetersonEM (2005) Interaction between components of the type III secretion system of Chlamydiaceae. J Bacteriol 187: 473–479.
24. FieldsKA, FischerER, MeadDJ, HackstadtT (2005) Analysis of putative Chlamydia trachomatis chaperones Scc2 and Scc3 and their use in the identification of type III secretion substrates. J Bacteriol 187: 6466–6478.
25. ArchuletaTL, DuY, EnglishCA, LoryS, LesserC, et al. (2011) The Chlamydia effector, chlamydial outer protein N (CopN), sequesters tubulin and prevents microtubule assembly. J Biol Chem 286: 33992–8.
26. Silva-HerzogE, JosephSS, AveryAK, CobaJA, WolfK, et al. (2011) Scc1 (CP0432) and Scc4 (CP0033) function as a type III secretion chaperone for CopN of Chlamydia pneumoniae. J Bacteriol 193: 3490–3496.
27. SchreinerM, NiemannHH (2012) Crystal structure of the Yersinia enterocolitica type III secretion chaperone SycD in complex with a peptide of the minor translocator YopD. BMC Struct Biol 12: 13.
28. CherradiY, SchiavolinL, MoussaS, MeghraouiA, MeksemA, et al. (2013) Interplay between predicted inner-rod and gatekeeper in controlling substrate specificity of the type III secretion system. Mol Microbiol 87: 1183–99.
29. TomalkaAG, ZminaSE, StopfordCM, RietschA (2013) Dimerization of the P. aeruginosa translocator chaperone PcrH is required for stability not function. J Bacteriol 195: 4836–43.
30. Lara-TejeroM, KatoJ, WagnerS, LiuX, GalanJE (2011) A sorting platform determines the order of protein secretion in bacterial type III systems. Science 331: 1188–1191.
31. WinnenB, SchlumbergerMC, SturmA, SchupbachK, SiebenmannS, et al. (2008) Hierarchical effector protein transport by the Salmonella Typhimurium SPI-1 type III secretion system. PLoS ONE 3: e2178.
32. ThomasNA, DengW, BakerN, PuenteJ, FinlayBB (2007) Hierarchical delivery of an essential host colonization factor in enteropathogenic Escherichia coli. J Biol Chem 282: 29634–29645.
33. HolmL, SanderC (1995) Dali: a network tool for protein structure comparison. Trends Biochem Sci 20: 478–480.
34. MurrayJW, DelumeauO, LewisRJ (2005) Structure of a nonheme globin in environmental stress signaling. Proc Natl Acad Sci U S A 102: 17320–17325.
35. QuinMB, BerrisfordJM, NewmanJA, BasleA, LewisRJ, et al. (2012) The bacterial stressosome: a modular system that has been adapted to control secondary messenger signaling. Structure 20: 350–363.
36. ReuterW, WiegandG, HuberR, ThanME (1999) Structural analysis at 2.2 A of orthorhombic crystals presents the asymmetry of the allophycocyanin-linker complex, AP.LC7.8, from phycobilisomes of Mastigocladus laminosus. Proc Natl Acad Sci U S A 96: 1363–1368.
37. DeaneJE, RoversiP, KingC, JohnsonS, LeaSM (2008) Structures of the Shigella flexneri type 3 secretion system protein MxiC reveal conformational variability amongst homologues. J Mol Biol 377: 985–992.
38. SchubotFD, JacksonMW, PenroseKJ, CherryS, TropeaJE, et al. (2005) Three-dimensional structure of a macromolecular assembly that regulates type III secretion in Yersinia pestis. J Mol Biol 346: 1147–1161.
39. AdamP, PatilM, DickensonN, ChoudhariS, BartaM, et al. (2012) Binding affects the tertiary and quaternary structures of the Shigella translocator protein IpaB and its chaperone IpgC. Biochemistry 51: 4062–4071.
40. CliffMJ, WilliamsMA, Brooke-SmithJ, BarfordD, LadburyJE (2005) Molecular recognition via coupled folding and binding in a TPR domain. J Mol Biol 346: 717–732.
41. LeNoue-NewtonM, WatkinsGR, ZouP, GermaneKL, McCorveyLR, et al. (2011) The E3 ubiquitin ligase- and protein phosphatase 2A (PP2A)-binding domains of the Alpha4 protein are both required for Alpha4 to inhibit PP2A degradation. J Biol Chem 286: 17665–17671.
42. BotteauxA, SoryMP, BiskriL, ParsotC, AllaouiA (2009) MxiC is secreted by and controls the substrate specificity of the Shigella flexneri type III secretion apparatus. Mol Microbiol 71: 449–460.
43. FieldsKA, HackstadtT (2000) Evidence for the secretion of Chlamydia trachomatis CopN by a type III secretion mechanism. Mol Microbiol 38: 1048–1060.
44. SakaHA, ValdiviaRH (2009) Acquisition of nutrients by Chlamydiae: unique challenges of living in an intracellular compartment. Curr Opin Microbiol 13: 4–10.
45. TomalkaAG, StopfordCM, LeePC, RietschA (2012) A translocator-specific export signal establishes the translocator-effector secretion hierarchy that is important for type III secretion system function. Mol Microbiol 86: 1464–1481.
46. OtwinowskiZ, MinorW (1997) Processing of X-ray Diffraction Data Collected in Oscillation Mode. Methods in Enzymology 276A: 307–326.
47. AdamsPD, Grosse-KunstleveRW, HungLW, IoergerTR, McCoyAJ, et al. (2002) PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 58: 1948–1954.
48. EmsleyP, CowtanK (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60: 2126–2132.
49. DeLano WL (2002) The PyMOL Molecular Graphics System. San Carlos, CA: DeLano Scientific.
50. PanchenkoAR, BryantSH (2002) A comparison of position-specific score matrices based on sequence and structure alignments. Protein Sci 11: 361–370.
51. GouetP, RobertX, CourcelleE (2003) ESPript/ENDscript: Extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res 31: 3320–3323.
52. AshkenazyH, ErezE, MartzE, PupkoT, Ben-TalN ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res 38 Suppl: W529–533.
53. DemersB, SansonettiPJ, ParsotC (1998) Induction of type III secretion in Shigella flexneri is associated with differential control of transcription of genes encoding secreted proteins. Embo J 17: 2894–2903.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 11
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Coronavirus Cell Entry Occurs through the Endo-/Lysosomal Pathway in a Proteolysis-Dependent Manner
- War and Infectious Diseases: Challenges of the Syrian Civil War
- The Epithelial αvβ3-Integrin Boosts the MYD88-Dependent TLR2 Signaling in Response to Viral and Bacterial Components
- Peculiarities of Prion Diseases