Aminoterminal Amphipathic α-Helix AH1 of Hepatitis C Virus Nonstructural Protein 4B Possesses a Dual Role in RNA Replication and Virus Production
With an estimated 180 million chronically infected individuals, hepatitis C virus (HCV) is a leading cause of chronic hepatitis, liver cirrhosis and hepatocellular carcinoma worldwide. HCV is a positive-strand RNA virus that builds its replication complex on rearranged intracellular membranes, designated as membranous web. HCV nonstructural protein 4B (NS4B) is a key organizer of HCV membranous web and replication complex formation. Here, we provide a detailed structure-function analysis of an N-terminal amphipathic α-helix of NS4B, named AH1, and demonstrate that it plays key roles in shaping the membranous web as well as in virus production. We also show that the N-terminal part of NS4B adopts a dual membrane topology in a replicative context, possibly reflecting the different roles of this protein in the viral life cycle.
Vyšlo v časopise:
Aminoterminal Amphipathic α-Helix AH1 of Hepatitis C Virus Nonstructural Protein 4B Possesses a Dual Role in RNA Replication and Virus Production. PLoS Pathog 10(11): e32767. doi:10.1371/journal.ppat.1004501
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004501
Souhrn
With an estimated 180 million chronically infected individuals, hepatitis C virus (HCV) is a leading cause of chronic hepatitis, liver cirrhosis and hepatocellular carcinoma worldwide. HCV is a positive-strand RNA virus that builds its replication complex on rearranged intracellular membranes, designated as membranous web. HCV nonstructural protein 4B (NS4B) is a key organizer of HCV membranous web and replication complex formation. Here, we provide a detailed structure-function analysis of an N-terminal amphipathic α-helix of NS4B, named AH1, and demonstrate that it plays key roles in shaping the membranous web as well as in virus production. We also show that the N-terminal part of NS4B adopts a dual membrane topology in a replicative context, possibly reflecting the different roles of this protein in the viral life cycle.
Zdroje
1. Various authors (2011) Nature Outlook: Hepatitis C. Nature 474: S1–S21.
2. Lindenbach BD, Murray CL, Thiel H-J, Rice CM (2013) Flaviviridae: the viruses and their replication. In: Knipe DM, al e, editors. Fields Virology. New York, NY: Lippincott Williams and Wilkins.
3. BurbeloPD, DuboviEJ, SimmondsP, MedinaJL, HenriquezJA, et al. (2012) Serology-enabled discovery of genetically diverse hepaciviruses in a new host. J Virol 86: 6171–6178.
4. LauckM, SibleySD, LaraJ, PurdyMA, KhudyakovY, et al. (2013) A novel hepacivirus with an unusually long and intrinsically disordered NS5A protein in a wild Old World primate. J Virol 87: 8971–8981.
5. MoradpourD, PeninF (2013) Hepatitis C virus proteins: from structure to function. Curr Top Microbiol Immunol 369: 113–142.
6. MoradpourD, PeninF, RiceCM (2007) Replication of hepatitis C virus. Nat Rev Microbiol 5: 453–463.
7. den BoonJA, DiazA, AhlquistP (2010) Cytoplasmic viral replication complexes. Cell Host Microbe 8: 77–85.
8. PaulD, BartenschlagerR (2013) Architecture and biogenesis of plus-strand RNA virus replication factories. World J Virol 2: 32–48.
9. Chatel-ChaixL, BartenschlagerR (2014) Dengue virus- and hepatitis C virus-induced replication and assembly compartments: the enemy inside - caught in the web. J Virol 88: 5907–5911.
10. EggerD, WölkB, GosertR, BianchiL, BlumHE, et al. (2002) Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex. J Virol 76: 5974–5984.
11. GosertR, EggerD, LohmannV, BartenschlagerR, BlumHE, et al. (2003) Identification of the hepatitis C virus RNA replication complex in Huh-7 cells harboring subgenomic replicons. J Virol 77: 5487–5492.
12. GouttenoireJ, PeninF, MoradpourD (2010) Hepatitis C virus nonstructural protein 4B: a journey into unexplored territory. Rev Med Virol 20: 117–129.
13. Romero-BreyI, MerzA, ChiramelA, LeeJY, ChlandaP, et al. (2012) Three-dimensional architecture and biogenesis of membrane structures associated with hepatitis C virus replication. PLoS Pathog 8: e1003056.
14. PaulD, HoppeS, SaherG, Krijnse-LockerJ, BartenschlagerR (2013) Morphological and biochemical characterization of the membranous hepatitis C virus replication compartment. J Virol 87: 10612–10627.
15. GouttenoireJ, CastetV, MontserretR, AroraN, RaussensV, et al. (2009) Identification of a novel determinant for membrane association in hepatitis C virus nonstructural protein 4B. J Virol 83: 6257–6268.
16. LundinM, MonneM, WidellA, Von HeijneG, PerssonMA (2003) Topology of the membrane-associated hepatitis C virus protein NS4B. J Virol 77: 5428–5438.
17. LundinM, LindstromH, GronwallC, PerssonMA (2006) Dual topology of the processed hepatitis C virus protein NS4B is influenced by the NS5A protein. J Gen Virol 87: 3263–3272.
18. GouttenoireJ, RoingeardP, PeninF, MoradpourD (2010) Amphipathic alpha-helix AH2 is a major determinant for the oligomerization of hepatitis C virus nonstructural protein 4B. J Virol 84: 12529–12537.
19. ElazarM, LiuP, RiceCM, GlennJS (2004) An N-terminal amphipathic helix in hepatitis C virus (HCV) NS4B mediates membrane association, correct localization of replication complex proteins, and HCV RNA replication. J Virol 78: 11393–11400.
20. Palomares-JerezF, NemesioH, VillalainJ (2012) The membrane spanning domains of protein NS4B from hepatitis C virus. Biochim Biophys Acta 1818: 2958–2966.
21. WishartDS, SykesBD, RichardsFM (1992) The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry 31: 1647–1651.
22. GautierR, DouguetD, AntonnyB, DrinG (2008) HELIQUEST: a web server to screen sequences with specific alpha-helical properties. Bioinformatics 24: 2101–2102.
23. BackesP, QuinkertD, ReissS, BinderM, ZayasM, et al. (2010) Role of annexin A2 in the production of infectious hepatitis C virus particles. J Virol 84: 5775–5789.
24. PaulD, Romero-BreyI, GouttenoireJ, StoitsovaS, Krijnse-LockerJ, et al. (2011) NS4B self-interaction through conserved C-terminal elements is required for the establishment of functional hepatitis C virus replication complexes. J Virol 85: 6963–6976.
25. FriebeP, BoudetJ, SimorreJ-P, BartenschlagerR (2005) A kissing loop interaction in the 3′ end of the hepatitis C virus genome essential for RNA replication. J Virol 79: 380–392.
26. GouttenoireJ, MontserretR, KennelA, PeninF, MoradpourD (2009) An amphipathic alpha-helix at the C terminus of NS4B mediates membrane association. J Virol 83: 11378–11384.
27. DrinG, CasellaJF, GautierR, BoehmerT, SchwartzTU, et al. (2007) A general amphipathic alpha-helical motif for sensing membrane curvature. Nat Struct Mol Biol 14: 138–146.
28. DrinG, AntonnyB (2010) Amphipathic helices and membrane curvature. FEBS Lett 584: 1840–1847.
29. NathS, DancourtJ, ShteynV, PuenteG, FongWM, et al. (2014) Lipidation of the LC3/GABARAP family of autophagy proteins relies on a membrane-curvature-sensing domain in Atg3. Nat Cell Biol 16: 415–424.
30. ReissS, RebhanI, BackesP, Romero-BreyI, ErfleH, et al. (2011) Recruitment and activation of a lipid kinase by hepatitis C virus NS5A is essential for integrity of the membranous replication compartment. Cell Host Microbe 9: 32–45.
31. WangH, PerryJW, LauringAS, NeddermannP, De FrancescoR, et al. (2014) Oxysterol-binding protein is a phosphatidylinositol 4-kinase effector required for HCV replication membrane integrity and cholesterol trafficking. Gastroenterology 146: 1373–1385.
32. GadlageMJ, SparksJS, BeachboardDC, CoxRG, DoyleJD, et al. (2010) Murine hepatitis virus nonstructural protein 4 regulates virus-induced membrane modifications and replication complex function. J Virol 84: 280–290.
33. PosthumaCC, PedersenKW, LuZ, JoostenRG, RoosN, et al. (2008) Formation of the arterivirus replication/transcription complex: a key role for nonstructural protein 3 in the remodeling of intracellular membranes. J Virol 82: 4480–4491.
34. BlightKJ (2011) Charged residues in hepatitis C virus NS4B are critical for multiple NS4B functions in RNA replication. J Virol 85: 8158–8171.
35. JonesDM, PatelAH, Targett-AdamsP, McLauchlanJ (2009) The hepatitis C virus NS4B protein can trans-complement viral RNA replication and modulates production of infectious virus. J Virol 83: 2163–2177.
36. HanQ, MannaD, BeltonK, ColeR, KonanKV (2013) Modulation of hepatitis C virus genome encapsidation by nonstructural protein 4B. J Virol 87: 7409–7422.
37. AppelN, ZayasM, MillerS, Krijnse-LockerJ, SchallerT, et al. (2008) Essential role of domain III of nonstructural protein 5A for hepatitis C virus infectious particle assembly. PLoS Pathog 4: e1000035.
38. TellinghuisenTL, FossKL, TreadawayJ (2008) Regulation of hepatitis C virion production via phosphorylation of the NS5A protein. PLoS Pathog 4: e1000032.
39. LambertC, PrangeR (2001) Dual topology of the hepatitis B virus large envelope protein: determinants influencing post-translational pre-S translocation. J Biol Chem 276: 22265–22272.
40. PantuaH, McGinnesLW, LeszykJ, MorrisonTG (2005) Characterization of an alternate form of Newcastle disease virus fusion protein. J Virol 79: 11660–11670.
41. CombetC, GarnierN, CharavayC, GrandoD, CrisanD, et al. (2007) euHCVdb: the European hepatitis C virus database. Nucleic Acids Res 35: D363–366.
42. CombetC, BlanchetC, GeourjonC, DeléageG (2000) NPS@: network protein sequence analysis. Trends Biochem Sci 25: 147–150.
43. ThompsonJD, HigginsDG, GibsonTJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680.
44. BlightKJ, McKeatingJA, RiceCM (2002) Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication. J Virol 76: 13001–13014.
45. GoulaD, RemyJS, ErbacherP, WasowiczM, LeviG, et al. (1998) Size, diffusibility and transfection performance of linear PEI/DNA complexes in the mouse central nervous system. Gene Ther 5: 712–717.
46. MoradpourD, WakitaT, TokushigeK, CarlsonRI, KrawczynskiK, et al. (1996) Characterization of three novel monoclonal antibodies against hepatitis C virus core protein. J Med Virol 48: 234–241.
47. DubuissonJ, HsuHH, CheungRC, GreenbergHB, RussellDG, et al. (1994) Formation and intracellular localization of hepatitis C virus envelope glycoprotein complexes expressed by recombinant vaccinia and Sindbis viruses. J Virol 68: 6147–6160.
48. LindenbachBD, EvansMJ, SyderAJ, WölkB, TellinghuisenTL, et al. (2005) Complete replication of hepatitis C virus in cell culture. Science 309: 623–626.
49. GossenM, BujardH (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 89: 5547–5551.
50. KolykhalovAA, AgapovEV, BlightKJ, MihalikK, FeinstoneSM, et al. (1997) Transmission of hepatitis C by intrahepatic inoculation with transcribed RNA. Science 277: 570–574.
51. IvashkinaN, WölkB, LohmannV, BartenschlagerR, BlumHE, et al. (2002) The hepatitis C virus RNA-dependent RNA polymerase membrane insertion sequence is a transmembrane segment. J Virol 76: 13088–13093.
52. WakitaT, PietschmannT, KatoT, DateT, MiyamotoM, et al. (2005) Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med 11: 791–796.
53. SchallerT, AppelN, KoutsoudakisG, KallisS, LohmannV, et al. (2007) Analysis of hepatitis C virus superinfection exclusion by using novel fluorochrome gene-tagged viral genomes. J Virol 81: 4591–4603.
54. MoradpourD, EvansMJ, GosertR, YuanZH, BlumHE, et al. (2004) Insertion of green fluorescent protein into nonstructural protein 5A allows direct visualization of functional hepatitis C virus replication complexes. J Virol 78: 7400–7409.
55. BellecaveP, GouttenoireJ, GajerM, BrassV, KoutsoudakisG, et al. (2009) Hepatitis B and C virus coinfection: A novel model system reveals the absence of direct viral interference. Hepatology 50: 46–55.
56. PietschmannT, KaulA, KoutsoudakisG, ShavinskayaA, KallisS, et al. (2006) Construction and characterization of infectious intragenotypic and intergenotypic hepatitis C virus chimeras. Proc Natl Acad Sci USA 103: 7408–7413.
57. MoradpourD, KaryP, RiceCM, BlumHE (1998) Continuous human cell lines inducibly expressing hepatitis C virus structural and nonstructural proteins. Hepatology 28: 192–201.
58. WhitmoreL, WallaceBA (2004) DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res 32: W668–673.
59. PeninF, GeourjonC, MontserretR, BockmannA, LesageA, et al. (1997) Three-dimensional structure of the DNA-binding domain of the fructose repressor from Escherichia coli by 1H and 15N NMR. J Mol Biol 270: 496–510.
60. MontserretR, SaintN, VanbelleC, SalvayAG, SimorreJP, et al. (2010) NMR structure and ion channel activity of the p7 protein from hepatitis C virus. J Biol Chem 285: 31446–31461.
61. MerutkaG, DysonHJ, WrightPE (1995) ‘Random coil’ 1H chemical shifts obtained as a function of temperature and trifluoroethanol concentration for the peptide series GGXGG. J Biomol NMR 5: 14–24.
62. Wüthrich K (1986) NMR of proteins and nucleic acids. New York: John Wiley & Sons.
63. CornilescuG, DelaglioF, BaxA (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13: 289–302.
64. SchwietersCD, KuszewskiJJ, TjandraN, CloreGM (2003) The Xplor-NIH NMR molecular structure determination package. J Magn Reson 160: 65–73.
65. KoradiR, BilleterM, WuthrichK (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 14: 51–55, 29–32.
66. SimmondsP, BukhJ, CombetC, DeleageG, EnomotoN, et al. (2005) Consensus proposals for a unified system of nomenclature of hepatitis C virus genotypes. Hepatology 42: 962–973.
67. WimleyWC, WhiteSH (1996) Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat Struct Biol 3: 842–848.
68. HumphreyW, DalkeA, SchultenK (1996) VMD: visual molecular dynamics. J Mol Graph 14: 33–38, 27–38.
69. GuexN, PeitschMC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18: 2714–2723.
70. SchneiderCA, RasbandWS, EliceiriKW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9: 671–675.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 11
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Coronavirus Cell Entry Occurs through the Endo-/Lysosomal Pathway in a Proteolysis-Dependent Manner
- War and Infectious Diseases: Challenges of the Syrian Civil War
- The Epithelial αvβ3-Integrin Boosts the MYD88-Dependent TLR2 Signaling in Response to Viral and Bacterial Components
- Peculiarities of Prion Diseases