#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Unravelling Human Trypanotolerance: IL8 is Associated with Infection Control whereas IL10 and TNFα Are Associated with Subsequent Disease Development


Whereas immunological mechanisms involved in the control of trypanosome infections have been extensively studied in animal models, knowledge of how Trypanosoma brucei gambiense interacts with its human hosts lags far behind. In this study we measured cytokine levels in sleeping sickness patients and individuals who were apparently able to control infection to subdetection levels over long periods of time or who were engaged in a process of self-cure as demonstrated by the disappearance of specific antibodies. In contrast to patients, trypanotolerant subjects were characterized by a strong inflammatory response with elevated levels of IL8, IL6, and TNFα. This study indicates that both protective immune responses and markers of disease development exist in human T. brucei. gambiense infection and constitute an important step forward to identify new diagnostic or therapeutic targets in the fight against sleeping sickness.


Vyšlo v časopise: Unravelling Human Trypanotolerance: IL8 is Associated with Infection Control whereas IL10 and TNFα Are Associated with Subsequent Disease Development. PLoS Pathog 10(11): e32767. doi:10.1371/journal.ppat.1004469
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004469

Souhrn

Whereas immunological mechanisms involved in the control of trypanosome infections have been extensively studied in animal models, knowledge of how Trypanosoma brucei gambiense interacts with its human hosts lags far behind. In this study we measured cytokine levels in sleeping sickness patients and individuals who were apparently able to control infection to subdetection levels over long periods of time or who were engaged in a process of self-cure as demonstrated by the disappearance of specific antibodies. In contrast to patients, trypanotolerant subjects were characterized by a strong inflammatory response with elevated levels of IL8, IL6, and TNFα. This study indicates that both protective immune responses and markers of disease development exist in human T. brucei. gambiense infection and constitute an important step forward to identify new diagnostic or therapeutic targets in the fight against sleeping sickness.


Zdroje

1. BuchetonB, MacLeodA, JamonneauV (2011) Human host determinants influencing the outcome of Trypanosoma brucei gambiense infections. Parasite Immunol 33: 438–447.

2. ChecchiF, FilipeJA, BarrettMP, ChandramohanD (2008) The natural progression of Gambiense sleeping sickness: what is the evidence? PLoS Negl Trop Dis 2: e303.

3. SternbergJM, MacleanL (2010) A spectrum of disease in Human African trypanosomiasis: the host and parasite genetics of virulence. Parasitology 137: 2007–2015.

4. JamonneauV, IlboudoH, KaboreJ, KabaD, KoffiM, et al. (2012) Untreated human infections by Trypanosoma brucei gambiense are not 100% fatal. PLoS Negl Trop Dis 6: e1691.

5. GarciaA, JamonneauV, MagnusE, LaveissiereC, LejonV, et al. (2000) Follow-up of Card Agglutination Trypanosomiasis Test (CATT) positive but apparently aparasitaemic individuals in Cote d'Ivoire: evidence for a complex and heterogeneous population. Trop Med Int Health 5: 786–793.

6. JamonneauV, BuchetonB, KaboreJ, IlboudoH, CamaraO, et al. (2010) Revisiting the immune trypanolysis test to optimise epidemiological surveillance and control of sleeping sickness in West Africa. PLoS Negl Trop Dis 4: e917.

7. IlboudoH, JamonneauV, CamaraM, CamaraO, DamaE, et al. (2011) Diversity of response to Trypanosoma brucei gambiense infections in the Forecariah mangrove focus (Guinea): perspectives for a better control of sleeping sickness. Microbes and Infection 13: 943–952.

8. KoffiM, SolanoP, DenizotM, CourtinD, GarciaA, et al. (2006) Aparasitemic serological suspects in Trypanosoma brucei gambiense human African trypanosomiasis: a potential human reservoir of parasites? Acta Trop 98: 183–188.

9. KaboreJ, KoffiM, BuchetonB, MacleodA, DuffyC, et al. (2011) First evidence that parasite infecting apparent aparasitemic serological suspects in human African trypanosomiasis are Trypanosoma brucei gambiense and are similar to those found in patients. Infect Genet Evol 11: 1250–1255.

10. KempSJ, IraqiF, DarvasiA, SollerM, TealeAJ (1997) Localization of genes controlling resistance to trypanosomiasis in mice. Nat Genet 16: 194–196.

11. MurrayM, TrailJC, DavisCE, BlackSJ (1984) Genetic resistance to African Trypanosomiasis. The Journal of infectious diseases 149: 311–319.

12. CourtiouxB, BodaC, VatungaG, PervieuxL, JosenandoT, et al. (2006) A link between chemokine levels and disease severity in human African trypanosomiasis. Int J Parasitol 36: 1057–1065.

13. LejonV, LardonJ, KenisG, PinogesL, LegrosD, et al. (2002) Interleukin (IL)-6, IL-8 and IL-10 in serum and CSF of Trypanosoma brucei gambiense sleeping sickness patients before and after treatment. Trans R Soc Trop Med Hyg 96: 329–333.

14. CamaraM, KabaD, KagbaDounoM, SanonJR, OuendenoFF, et al. (2005) [Human African trypanosomiasis in the mangrove forest in Guinea: epidemiological and clinical features in two adjacent outbreak areas]. Med Trop (Mars) 65: 155–161.

15. CamaraM, CamaraO, IlboudoH, SakandeH, KaboreJ, et al. (2010) Sleeping sickness diagnosis: use of buffy coats improves the sensitivity of the mini anion exchange centrifugation test. Trop Med Int Health 15: 796–799.

16. KagbadounoMS, CamaraM, RouambaJ, RayaisseJB, TraoreIS, et al. (2012) Epidemiology of sleeping sickness in Boffa (Guinea): where are the trypanosomes? PLoS Negl Trop Dis 6: e1949.

17. MiezanTW, MedaHA, DouaF, DjeNN, LejonV, et al. (2000) Single centrifugation of cerebrospinal fluid in a sealed pasteur pipette for simple, rapid and sensitive detection of trypanosomes. Trans R Soc Trop Med Hyg 94: 293.

18. ChesselD, DufourA, ThioulouseJ (2004) The ade4 package. R news

19. IlboudoH, BerthierD, CamaraM, CamaraO, KaboreJ, et al. (2012) APOL1 expression is induced by Trypanosoma brucei gambiense infection but is not associated with differential susceptibility to sleeping sickness. Infect Genet Evol 12: 1519–1523.

20. HanotteO, RoninY, AgabaM, NilssonP, GelhausA, et al. (2003) Mapping of quantitative trait loci controlling trypanotolerance in a cross of tolerant West African N'Dama and susceptible East African Boran cattle. Proc Natl Acad Sci U S A 100: 7443–7448.

21. KempSJ, DarvasiA, SollerM, TealeAJ (1996) Genetic control of resistance to trypanosomiasis. Vet Immunol Immunopathol 54: 239–243.

22. NaessensJ (2006) Bovine trypanotolerance: A natural ability to prevent severe anaemia and haemophagocytic syndrome? Int J Parasitol 36: 521–528.

23. NaessensJ, TealeAJ, SileghemM (2002) Identification of mechanisms of natural resistance to African trypanosomiasis in cattle. Vet Immunol Immunopathol 87: 187–194.

24. GiroudC, OttonesF, CoustouV, DacheuxD, BiteauN, et al. (2009) Murine Models for Trypanosoma brucei gambiense disease progression–from silent to chronic infections and early brain tropism. PLoS Negl Trop Dis 3: e509.

25. KennedyPG (2008) The continuing problem of human African trypanosomiasis (sleeping sickness). Ann Neurol 64: 116–126.

26. MacLeanL, OdiitM, SternbergJM (2001) Nitric oxide and cytokine synthesis in human African trypanosomiasis. J Infect Dis 184: 1086–1090.

27. MacleanL, OdiitM, SternbergJM (2006) Intrathecal cytokine responses in Trypanosoma brucei rhodesiense sleeping sickness patients. Trans R Soc Trop Med Hyg 100: 270–275.

28. HainardA, TibertiN, RobinX, LejonV, NgoyiDM, et al. (2009) A combined CXCL10, CXCL8 and H-FABP panel for the staging of human African trypanosomiasis patients. PLoS Negl Trop Dis 3: e459.

29. HainardA, TibertiN, RobinX, NgoyiDM, MatovuE, et al. (2011) Matrix metalloproteinase-9 and intercellular adhesion molecule 1 are powerful staging markers for human African trypanosomiasis. Trop Med Int Health 16: 119–126.

30. TibertiN, LejonV, HainardA, CourtiouxB, RobinX, et al. (2013) Neopterin is a cerebrospinal fluid marker for treatment outcome evaluation in patients affected by Trypanosoma brucei gambiense sleeping sickness. PLoS Negl Trop Dis 7: e2088.

31. MacLeanL, ChisiJE, OdiitM, GibsonWC, FerrisV, et al. (2004) Severity of human african trypanosomiasis in East Africa is associated with geographic location, parasite genotype, and host inflammatory cytokine response profile. Infect Immun 72: 7040–7044.

32. MacleanL, OdiitM, MacleodA, MorrisonL, SweeneyL, et al. (2007) Spatially and genetically distinct African Trypanosome virulence variants defined by host interferon-gamma response. J Infect Dis 196: 1620–1628.

33. MansfieldJM, PaulnockDM (2005) Regulation of innate and acquired immunity in African trypanosomiasis. Parasite Immunol 27: 361–371.

34. MagezS, RadwanskaM, DrennanM, FickL, BaralTN, et al. (2006) Interferon-gamma and nitric oxide in combination with antibodies are key protective host immune factors during trypanosoma congolense Tc13 Infections. J Infect Dis 193: 1575–1583.

35. StijlemansB, VankrunkelsvenA, CaljonG, BockstalV, GuilliamsM, et al. (2010) The central role of macrophages in trypanosomiasis-associated anemia: rationale for therapeutical approaches. Endocrine, metabolic & immune disorders drug targets 10: 71–82.

36. ShiM, WeiG, PanW, TabelH (2006) Experimental African trypanosomiasis: a subset of pathogenic, IFN-gamma-producing, MHC class II-restricted CD4+ T cells mediates early mortality in highly susceptible mice. J Immunol 176: 1724–1732.

37. DrennanMB, StijlemansB, Van den AbbeeleJ, QuesniauxVJ, BarkhuizenM, et al. (2005) The induction of a type 1 immune response following a Trypanosoma brucei infection is MyD88 dependent. J Immunol 175: 2501–2509.

38. LeppertBJ, MansfieldJM, PaulnockDM (2007) The soluble variant surface glycoprotein of African trypanosomes is recognized by a macrophage scavenger receptor and induces I kappa B alpha degradation independently of TRAF6-mediated TLR signaling. J Immunol 179: 548–556.

39. StijlemansB, GuilliamsM, RaesG, BeschinA, MagezS, et al. (2007) African trypanosomosis: from immune escape and immunopathology to immune intervention. Vet Parasitol 148: 3–13.

40. KitaniH, BlackSJ, NakamuraY, NaessensJ, MurphyNB, et al. (2002) Recombinant tumor necrosis factor alpha does not inhibit the growth of African trypanosomes in axenic cultures. Infect Immun 70: 2210–2214.

41. MagezS, GeuskensM, BeschinA, del FaveroH, VerschuerenH, et al. (1997) Specific uptake of tumor necrosis factor-alpha is involved in growth control of Trypanosoma brucei. J Cell Biol 137: 715–727.

42. DaulouedeS, BouteilleB, MoynetD, De BaetselierP, CourtoisP, et al. (2001) Human macrophage tumor necrosis factor (TNF)-alpha production induced by Trypanosoma brucei gambiense and the role of TNF-alpha in parasite control. J Infect Dis 183: 988–991.

43. MestasJ, HughesCC (2004) Of mice and not men: differences between mouse and human immunology. J Immunol 172: 2731–2738.

44. HarringtonJM (2011) Antimicrobial peptide killing of African trypanosomes. Parasite Immunol 33: 461–469.

45. H3Africa Consortium (2014) Research capacity. Enabling the genomic revolution in Africa. Science 344: 1346–1348.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2014 Číslo 11
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#