The Type III Translocon Is Required for Biofilm Formation at the Epithelial Barrier
Clinical infections by Pseudomonas aeruginosa, a deadly Gram-negative, opportunistic pathogen of immunocompromised patients, involve the formation of antibiotic-resistant biofilms. Although P. aeruginosa biofilm formation has been extensively studied on glass or plastic surfaces, less is known about biofilm formation at the epithelial barrier. This study shows that, on epithelial cells, P. aeruginosa forms aggregates that exhibit key characteristics of biofilms. Furthermore, we demonstrate that aggregation on epithelial cells and at early time points in mouse pneumonia requires pore formation mediated by the type III secretion system. Our results indicate that biofilm-like aggregation is induced by a host cell factor that is released after pore formation, suggesting an unexpected role for an acute virulence factor in biofilm formation.
Vyšlo v časopise:
The Type III Translocon Is Required for Biofilm Formation at the Epithelial Barrier. PLoS Pathog 10(11): e32767. doi:10.1371/journal.ppat.1004479
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004479
Souhrn
Clinical infections by Pseudomonas aeruginosa, a deadly Gram-negative, opportunistic pathogen of immunocompromised patients, involve the formation of antibiotic-resistant biofilms. Although P. aeruginosa biofilm formation has been extensively studied on glass or plastic surfaces, less is known about biofilm formation at the epithelial barrier. This study shows that, on epithelial cells, P. aeruginosa forms aggregates that exhibit key characteristics of biofilms. Furthermore, we demonstrate that aggregation on epithelial cells and at early time points in mouse pneumonia requires pore formation mediated by the type III secretion system. Our results indicate that biofilm-like aggregation is induced by a host cell factor that is released after pore formation, suggesting an unexpected role for an acute virulence factor in biofilm formation.
Zdroje
1. CostertonJW, StewartPS, GreenbergEP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284: 1318–1322.
2. Hall-StoodleyL, StoodleyP, KathjuS, HoibyN, MoserC, et al. (2012) Towards diagnostic guidelines for biofilm-associated infections. FEMS Immunol Med Microbiol 65: 127–145.
3. ParsekMR, SinghPK (2003) Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol 57: 677–701.
4. Hall-StoodleyL, CostertonJW, StoodleyP (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nature reviews Microbiology 2: 95–108.
5. FurukawaS, KuchmaSL, O'TooleGA (2006) Keeping their options open: acute versus persistent infections. Journal of bacteriology 188: 1211–1217.
6. GoodmanAL, KulasekaraB, RietschA, BoydD, SmithRS, et al. (2004) A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev Cell 7: 745–754.
7. HorsmanSR, MooreRA, LewenzaS (2012) Calcium chelation by alginate activates the type III secretion system in mucoid Pseudomonas aeruginosa biofilms. PLoS One 7: e46826.
8. ManosJ, ArthurJ, RoseB, BellS, TingpejP, et al. (2009) Gene expression characteristics of a cystic fibrosis epidemic strain of Pseudomonas aeruginosa during biofilm and planktonic growth. FEMS Microbiol Lett 292: 107–114.
9. MikkelsenH, BondNJ, SkindersoeME, GivskovM, LilleyKS, et al. (2009) Biofilms and type III secretion are not mutually exclusive in Pseudomonas aeruginosa. Microbiology 155: 687–698.
10. Moreau-MarquisS, BombergerJM, AndersonGG, Swiatecka-UrbanA, YeS, et al. (2008) The {Delta}F508-CFTR Mutation Results in Increased Biofilm Formation by P. aeruginosa by Increasing Iron Availability. Am J Physiol Lung Cell Mol Physiol 295: L25–37.
11. WoodworthBA, TamashiroE, BhargaveG, CohenNA, PalmerJN (2008) An in vitro model of Pseudomonas aeruginosa biofilms on viable airway epithelial cell monolayers. Am J Rhinol 22: 235–238.
12. BuciorI, MostovK, EngelJN (2010) Pseudomonas aeruginosa-mediated damage requires distinct receptors at the apical and basolateral surfaces of the polarized epithelium. Infect Immun 78: 939–953.
13. BuciorI, PielageJF, EngelJN (2012) Pseudomonas aeruginosa pili and flagella mediate distinct binding and signaling events at the apical and basolateral surface of airway epithelium. PLoS pathogens 8: e1002616.
14. MostovKE (1995) Regulation of protein traffic in polarized epithelial cells. Histol Histopathol 10: 423–431.
15. KierbelA, Gassama-DiagneA, RochaC, RadoshevichL, OlsonJ, et al. (2007) Pseudomonas aeruginosa exploits a PIP3-dependent pathway to transform apical into basolateral membrane. J Cell Biol 177: 21–27.
16. LepantoP, BryantDM, RosselloJ, DattaA, MostovKE, et al. (2011) Pseudomonas aeruginosa interacts with epithelial cells rapidly forming aggregates that are internalized by a Lyn-dependent mechanism. Cellular microbiology 13: 1212–1222.
17. TranC, EranY, RuchT, BryantD, DattaA, et al. (2014) Host cell polarity proteins participate in innate immunity to Pseudomonas aeruginosa infection. Cell Host Microbe in press.
18. O'TooleGA, KolterR (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30: 295–304.
19. Allesen-HolmM, BarkenKB, YangL, KlausenM, WebbJS, et al. (2006) A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 59: 1114–1128.
20. MaL, ConoverM, LuH, ParsekMR, BaylesK, et al. (2009) Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog 5: e1000354.
21. MaL, LuH, SprinkleA, ParsekMR, WozniakDJ (2007) Pseudomonas aeruginosa Psl is a galactose- and mannose-rich exopolysaccharide. J Bacteriol 189: 8353–8356.
22. KlausenM, HeydornA, RagasP, LambertsenL, Aaes-JorgensenA, et al. (2003) Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48: 1511–1524.
23. EngelJ, BalachandranP (2009) Role of Pseudomonas aeruginosa type III effectors in disease. Curr Opin Microbiol 12: 61–66.
24. KuchmaSL, ConnollyJP, O'TooleGA (2005) A three-component regulatory system regulates biofilm maturation and type III secretion in Pseudomonas aeruginosa. J Bacteriol 187: 1441–1454.
25. VentreI, GoodmanAL, Vallet-GelyI, VasseurP, SosciaC, et al. (2006) Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proc Natl Acad Sci U S A 103: 171–176.
26. WattonSJ, DownwardJ (1999) Akt/PKB localisation and 3′ phosphoinositide generation at sites of epithelial cell-matrix and cell-cell interaction. Curr Biol 9: 433–436.
27. LeeVT, SmithRS, TummlerB, LoryS (2005) Activities of Pseudomonas aeruginosa effectors secreted by the Type III secretion system in vitro and during infection. Infect Immun 73: 1695–1705.
28. KangPJ, HauserAR, ApodacaG, FleiszigSM, Wiener-KronishJ, et al. (1997) Identification of Pseudomonas aeruginosa genes required for epithelial cell injury. Mol Microbiol 24: 1249–1262.
29. DiazMH, HauserAR (2010) Pseudomonas aeruginosa cytotoxin ExoU is injected into phagocytic cells during acute pneumonia. Infect Immun 78: 1447–1456.
30. SundinC, WolfgangMC, LoryS, ForsbergA, Frithz-LindstenE (2002) Type IV pili are not specifically required for contact dependent translocation of exoenzymes by Pseudomonas aeruginosa. Microb Pathog 33: 265–277.
31. HauserAR (2009) The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat Rev Microbiol 7: 654–665.
32. BhakdiS, BayleyH, ValevaA, WalevI, WalkerB, et al. (1996) Staphylococcal alpha-toxin, streptolysin-O, and Escherichia coli hemolysin: prototypes of pore-forming bacterial cytolysins. Arch Microbiol 165: 73–79.
33. Moreau-MarquisS, O'TooleGA, StantonBA (2009) Tobramycin and FDA-approved iron chelators eliminate Pseudomonas aeruginosa biofilms on cystic fibrosis cells. Am J Respir Cell Mol Biol 41: 305–313.
34. DacheuxD, GoureJ, ChabertJ, UssonY, AttreeI (2001) Pore-forming activity of type III system-secreted proteins leads to oncosis of Pseudomonas aeruginosa-infected macrophages. Mol Microbiol 40: 76–85.
35. GoureJ, PastorA, FaudryE, ChabertJ, DessenA, et al. (2004) The V antigen of Pseudomonas aeruginosa is required for assembly of the functional PopB/PopD translocation pore in host cell membranes. Infect Immun 72: 4741–4750.
36. VanceRE, RietschA, MekalanosJJ (2005) Role of the type III secreted exoenzymes S, T, and Y in systemic spread of Pseudomonas aeruginosa PAO1 in vivo. Infect Immun 73: 1706–1713.
37. GalleM, JinS, BogaertP, HaegmanM, VandenabeeleP, et al. (2012) The Pseudomonas aeruginosa type III secretion system has an exotoxon S/T/Y independent pathogenic role during acute lung infection. PLoS One 7: 1–8.
38. LavoieEG, WangdiT, KazmierczakBI (2011) Innate immune responses to Pseudomonas aeruginosa infection. Microbes and infection/Institut Pasteur 13: 1133–1145.
39. SchaberJA, TriffoWJ, SuhSJ, OliverJW, HastertMC, et al. (2007) Pseudomonas aeruginosa forms biofilms in acute infection independent of cell-to-cell signaling. Infection and immunity 75: 3715–3721.
40. JusticeSS, HungC, TheriotJA, FletcherDA, AndersonGG, et al. (2004) Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc Natl Acad Sci U S A 101: 1333–1338.
41. AlhedeM, KraghKN, QvortrupK, Allesen-HolmM, van GennipM, et al. (2011) Phenotypes of non-attached Pseudomonas aeruginosa aggregates resemble surface attached biofilm. PLoS One 6: e27943.
42. StaudingerBJ, MullerJF, HalldorssonS, BolesB, AngermeyerA, et al. (2014) Conditions associated with the cystic fibrosis defect promote chronic Pseudomonas aeruginosa infection. Am J Respir Crit Care Med 189: 812–824.
43. ColvinKM, GordonVD, MurakamiK, BorleeBR, WozniakDJ, et al. (2011) The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS pathogens 7: e1001264.
44. SmithEE, BuckleyDG, WuZ, SaenphimmachakC, HoffmanLR, et al. (2006) Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A 103: 8487–8492.
45. JainM, Bar-MeirM, McColleyS, CullinaJ, PotterE, et al. (2008) Evolution of Pseudomonas aeruginosa type III secretion in cystic fibrosis: a paradigm of chronic infection. Transl Res 152: 257–264.
46. HuH, HarmerC, AnujS, WainwrightCE, ManosJ, et al. (2012) Type 3 secretion system effector genotype and secretion phenotype of longitudinally collected Pseudomonas aeruginosa isolates from young children diagnosed with cystic fibrosis following newborn screening. Clin Microbiol Infect 19 doi:10.1111/j.1469-0691.2012.03770.x
47. NguyenD, SinghPK (2006) Evolving stealth: genetic adaptation of Pseudomonas aeruginosa during cystic fibrosis infections. Proc Natl Acad Sci U S A 103: 8305–8306.
48. YuW, O'BrienLE, WangF, BourneH, MostovKE, et al. (2003) Hepatocyte growth factor switches orientation of polarity and mode of movement during morphogenesis of multicellular epithelial structures. Mol Biol Cell 14: 748–763.
49. KierbelA, Gassama-DiagneA, MostovK, EngelJN (2005) The phosphoinositol-3-kinase-protein kinase B/Akt pathway is critical for Pseudomonas aeruginosa strain PAK internalization. Mol Biol Cell 16: 2577–2585.
50. KazmierczakBI, JouTS, MostovK, EngelJN (2001) Rho GTPase activity modulates Pseudomonas aeruginosa internalization by epithelial cells. Cell Microbiol 3: 85–98.
51. ApodacaG, KatzLA, MostovKE (1994) Receptor-mediated transcytosis of IgA in MDCK cells is via apical recycling endosomes. Journal of Cell Biology 125: 67–86.
52. EdelsteinA, AmodajN, HooverK, ValeR, StuurmanN (2010) Computer control of microscopes using microManager. Current protocols in molecular biology/edited by Frederick M Ausubel doi:10.1002/0471142727.mb1420s92
53. SchneiderCA, RasbandWS, EliceiriKW (2012) NIH Image to ImageJ: 25 years of image analysis. Nature methods 9: 671–675.
54. BolteS, CordelieresFP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224: 213–232.
55. ComolliJC, HauserAR, WaiteL, WhitchurchCB, MattickJS, et al. (1999) Pseudomonas aeruginosa gene products PilT and PilU are required for cytotoxicity in vitro and virulence in a mouse model of acute pneumonia. Infect Immun 67: 3625–3630.
56. O'TooleGA (2011) Microtiter dish biofilm formation assay. J Vis Exp 47 doi:10.3791/2437
57. DasguptaN, WolfgangMC, GoodmanAL, AroraSK, JyotJ, et al. (2003) A four-tiered transcriptional regulatory circuit controls flagellar biogenesis in Pseudomonas aeruginosa. Mol Microbiol 50: 809–824.
58. WatsonAA, MattickJS, AlmRA (1996) Functional expression of heterologous type 4 fimbriae in Pseudomonas aeruginosa. Gene 175: 143–150.
59. BrannonMK, DavisJM, MathiasJR, HallCJ, EmersonJC, et al. (2009) Pseudomonas aeruginosa Type III secretion system interacts with phagocytes to modulate systemic infection of zebrafish embryos. Cellular microbiology 11: 755–768.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 11
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Coronavirus Cell Entry Occurs through the Endo-/Lysosomal Pathway in a Proteolysis-Dependent Manner
- War and Infectious Diseases: Challenges of the Syrian Civil War
- The Epithelial αvβ3-Integrin Boosts the MYD88-Dependent TLR2 Signaling in Response to Viral and Bacterial Components
- Peculiarities of Prion Diseases