Cyclic di-GMP-dependent Signaling Pathways in the Pathogenic Firmicute
Listeria monocytogenes is ubiquitously present in the environment, highly adaptable and tolerant to various stresses. L. monocytogenes is also a foodborne pathogen associated with the largest foodborne outbreaks in recent US history. Signaling pathways involving the second messenger c-di-GMP play important roles in increased stress survival of proteobacteria and mycobacteria, yet roles of c-di-GMP signaling pathways in L. monocytogenes have remained unexplored. Here, we identified and systematically characterized functions of the proteins involved in c-di-GMP synthesis, degradation and sensing. We show that elevated c-di-GMP levels in L. monocytogenes result in synthesis of a previously unknown exopolysaccharide that promotes cell aggregation, inhibits motility in semi-solid media, and importantly, enhances bacterial tolerance to commonly used disinfectants as well as desiccation. These properties of the exopolysaccharide may increase listerial survival in food processing plants as well as on produce during transportation and storage. Elevated c-di-GMP levels also grossly diminish listerial invasiveness in enterocytes in vitro, and impair bacterial accumulation in selected mouse organs during oral infection.
Vyšlo v časopise:
Cyclic di-GMP-dependent Signaling Pathways in the Pathogenic Firmicute. PLoS Pathog 10(8): e32767. doi:10.1371/journal.ppat.1004301
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004301
Souhrn
Listeria monocytogenes is ubiquitously present in the environment, highly adaptable and tolerant to various stresses. L. monocytogenes is also a foodborne pathogen associated with the largest foodborne outbreaks in recent US history. Signaling pathways involving the second messenger c-di-GMP play important roles in increased stress survival of proteobacteria and mycobacteria, yet roles of c-di-GMP signaling pathways in L. monocytogenes have remained unexplored. Here, we identified and systematically characterized functions of the proteins involved in c-di-GMP synthesis, degradation and sensing. We show that elevated c-di-GMP levels in L. monocytogenes result in synthesis of a previously unknown exopolysaccharide that promotes cell aggregation, inhibits motility in semi-solid media, and importantly, enhances bacterial tolerance to commonly used disinfectants as well as desiccation. These properties of the exopolysaccharide may increase listerial survival in food processing plants as well as on produce during transportation and storage. Elevated c-di-GMP levels also grossly diminish listerial invasiveness in enterocytes in vitro, and impair bacterial accumulation in selected mouse organs during oral infection.
Zdroje
1. RossP, WeinhouseH, AloniY, MichaeliD, OhanaP, et al. (1987) Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325: 279–81.
2. RömlingU, GalperinMY, GomelskyM (2013) Cyclic di-GMP: The first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77: 1–52.
3. KrastevaPV, GiglioKM, SondermannH (2012) Sensing the messenger: The diverse ways that bacteria signal through c-di-GMP. Protein Sci 21: 929–48.
4. SondermannH, ShikumaNJ, YildizFH (2012) You've come a long way: c-di-GMP signaling. Curr Opin Microbiol 15: 140–6.
5. BoydCD, O'TooleGA (2012) Second messenger regulation of biofilm formation: breakthroughs in understanding c-di-GMP effector systems. Annu Rev Cell Dev Biol 28: 439–62.
6. MillsE, PultzIS, KulasekaraHD, MillerSI (2011) The bacterial second messenger c-di-GMP: mechanisms of signalling. Cell Microbiol 13: 1122–9.
7. TamayoR, PrattJT, CamilliA (2007) Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annu Rev Microbiol 61: 131–48.
8. KulesekaraH, LeeV, BrencicA, LiberatiN, UrbachJ, et al. (2006) Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3′-5′)-cyclic-GMP in virulence. Proc Natl Acad Sci USA 103: 2839–44.
9. AhmadI, LamprokostopoulouA, Le GuyonS, StreckE, BarthelM, et al. (2011) Complex c-di-GMP signaling networks mediate transition between virulence properties and biofilm formation in Salmonella enterica serovar Typhimurium. PLoS One 6: e28351.
10. StarkeyM, HickmanJH, MaL, ZhangN, De LongS, et al. (2009) Pseudomonas aeruginosa rugose small colony variants have adaptations likely to promote persistence in the cystic fibrosis lung. J Bacteriol 191: 3492–3503.
11. MaloneJG, JaegerT, SpanglerC, RitzD, SpangA, et al. (2010) YfiBNR mediates cyclic di-GMP dependent small colony variant formation and persistence in Pseudomonas aeruginosa. PLoS Pathog 6: e1000804.
12. ByrdMS, PangB, HongW, WaligoraEA, JuneauRA, et al. (2011) Direct evaluation of Pseudomonas aeruginosa biofilm mediators in a chronic infection model. Infect Immun 79: 3087–95.
13. LaiTH, KumagaiY, HyodoM, HayakawaY, RikihisaY (2008) Anaplasma phagocytophilum PleC histidine kinase and PleD diguanylate cyclase two-component system and role of cyclic di-GMP in host-cell infection. J Bacteriol 191: 693–700.
14. KumagaiY, MatsuoJ, HayakawaY, RikihisaY (2010) Cyclic di-GMP signaling regulates invasion by Ehrlichia chaffeensis of human monocytes. J Bacteriol 192: 4122–33.
15. KumagaiY, MatsuoJ, ChengZ, HayakawaY, RikihisaY (2011) c-di-GMP signaling regulates intracellular aggregation, sessility, and growth of Ehrlichia chaffeensis. Infect Immun 79: 3905–12.
16. LeviA, FolcherM, JenalU, ShumanHA (2011) Cyclic diguanylate signaling proteins control intracellular growth of Legionella pneumophila. mBio 2: e00316–10.
17. CossartP (2011) Illuminating the landscape of host-pathogen interactions with the bacterium Listeria monocytogenes. Proc Natl Acad Sci U S A 108: 19484–91.
18. FreitagNE, PortGC, MinerMD (2009) Listeria monocytogenes - from saprophyte to intracellular pathogen. Nat Rev Microbiol 7: 623–28.
19. DrevetsDA, BronzeMS (2008) Listeria monocytogenes: epidemiology, human disease, and mechanisms of brain invasion. FEMS Immunoi Med Microbiol 53: 151–65.
20. AllerbergerF, WagnerM (2010) Listeriosis: a resurgent foodborne infection. Clin Microbiol Infection 16: 16–23.
21. MoretroT, LangsrudS (2004) Listeria monocytogenes: biofilm formation and persistence in food-processing environments. Biofilms 1: 107–21.
22. OrsiRH, BorowskyML, LauerP, YoungSK, NusbaumC, et al. (2008) Short-term genome evolution of Listeria monocytogenes in a non-controlled environment. BMC Genomics 9: 539.
23. Centers for Disease Control and Prevention. Multistate Outbreak of Listeriosis Linked to Whole Cantaloupes from Jensen Farms, Colorado. http://www.cdc.gov/listeria/outbreaks/cantaloupes-jensen-farms/082712/index.html
24. McCollumJT, CronquistAB, SilkBJ, JacksonKA, O'ConnorKA, et al. (2013) Multistate outbreak of listeriosis associated with cantaloupe. N Engl J Med 369: 944–53.
25. RameyBE, KoutsoudisM, von BodmanSB, FuquaC (2004) Biofilm formation in plant-microbe associations. Curr Opin Microbiol 7: 602–09.
26. FlemmingHC, WingenderJ (2010) The biofilm matrix. Nat Rev Microbiol 8: 623–33.
27. RenierS, HébraudM, DesvauxM (2011) Molecular biology of surface colonization by Listeria monocytogenes: an additional facet of an opportunistic Gram-positive foodborne pathogen. Environ Microbiol 13: 835–50.
28. HoelzerK, PouillotR, DennisS (2012) Listeria monocytogenes growth dynamics on produce: A review of the available data for predictive modeling. Foodborne Pathog Dis 9: 661–73.
29. BordeleauE, FortierLC, MalouinF, BurrusV (2011) c-di-GMP turn-over in Clostridium difficile is controlled by a plethora of diguanylate cyclases and phosphodiesterases. PLoS Genet 7: e1002039.
30. PurcellEB, McKeeRW, McBrideSM, WatersCM, TamayoR (2012) Cyclic diguanylate inversely regulates motility and aggregation in Clostridium difficile. J Bacteriol 194: 3307–16.
31. ChenY, ChaiY, GuoJH, LosickR (2012) Evidence for cyclic di-GMP-mediated signaling in Bacillus subtilis. J Bacteriol 194: 5080–90.
32. GaoX, MukherjeeS, MatthewsPM, HammadLA, KearnsDB, DannCE3rd (2013) Functional characterization of core components of the Bacillus subtilis c-di-GMP signaling pathway. J Bacteriol 195: 4782–92.
33. HollandLM, O'DonnellST, RyjenkovDA, GomelskyL, SlaterSR, et al. (2008) A staphylococcal GGDEF domain protein regulates biofilm formation independently of c-di-GMP. J Bacteriol 190: 5178–89.
34. SudarsanN, LeeER, WeinbergZ, MoyRH, KimJN, et al. (2008) Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321: 411–13.
35. LeeER, BakerJL, WeinbergZ, SudarsanN, BreakerRR (2010) An allosteric self-splicing ribozyme triggered by a bacterial second messenger. Science 329: 845–48.
36. PaulR, WeiserS, AmiotNC, ChanC, SchirmerT, et al. (2004) Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel diguanylate cyclase output domain. Genes Dev 18: 715–27.
37. RyjenkovDA, TarutinaM, MoskvinOV, GomelskyM (2005) Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: Insights into the biochemistry of the GGDEF protein domain. J Bacteriol 187: 1792–98.
38. SchmidtAJ, RyjenkovDA, GomelskyM (2005) The ubiquitous protein domain EAL is a cyclic diguanylate-specific phosphodiesterase: enzymatically active and inactive EAL domains. J Bacteriol 187: 4774–81.
39. ChristenM, ChristenB, FolcherM, SchauerteA, JenalU (2005) Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. J Biol Chem 280: 30829–37.
40. TamayoR, TischlerAD, CamilliA (2005) The EAL domain protein VieA is a cyclic diguanylate phosphodiesterase. J Biol Chem 280: 33324–30.
41. RyanRP, FouhyY, LuceyJF, CrossmanLC, SpiroS, et al. (2006) Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Proc Natl Acad Sci USA 103: 6712–17.
42. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, et al. (2012) The Pfam protein families database. Nucleic Acids Res 40(Database issue): D290–301.
43. ChanC, PaulR, SamorayD, AmiotNC, GieseB, et al. (2004) Structural basis of activity and allosteric control of diguanylate cyclase. Proc Natl Acad Sci USA 101: 17084–89.
44. BarendsTR, HartmannE, GrieseJJ, BeitlichT, KirienkoNV, et al. (2009) Structure and mechanism of a bacterial ligh-regulated cyclic nucleotide phosphodiesterase. Nature 459: 1015–18.
45. Toledo-AranaA, DussurgetO, NikitasG, SestoN, Guet-RevilletH, et al. (2009) The Listeria transcriptional landscape from saprophytism to virulence. Nature 459: 950–6.
46. GoughJ, KarplusK, HugheyR, ChothiaC (2001) Assignment of homology to genome sequences using a library of Hidden Markov Models that represent all proteins of known structure. J Mol Biol 313: 903–19.
47. ChristenB, ChristenM, PaulR, SchmidF, FolcherM, et al. (2006) Allosteric control of cyclic di-GMP signaling. J Biol Chem 281: 32015–32024.
48. LeeVT, MatewishJM, KesslerJL, HyodoM, HayakawaY, LoryS (2007) A cyclic-di-GMP receptor required for bacterial exopolysaccharide production. Mol Microbiol 65: 1474–84.
49. DuerigA, AbelS, FolcherM, NicollierM, SchwedeT, et al. (2009) Second messenger-mediated spatiotemporal control of protein degradation regulates bacterial cell cycle progression. Genes Dev 23: 93–104.
50. SimmR, MorrM, KaderA, NimtzM, RömlingU (2004) GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53: 1123–34.
51. RyjenkovDA, SimmR, RömlingU, GomelskyM (2006) The PilZ domain is a receptor for the second messenger c-di-GMP: The PilZ domain protein YcgR controls motility in entrobacteria. J Biol Chem 281: 30310–14.
52. GirgisHS, LiuY, RyuWS, TavazoieS (2007) A comprehensive genetic characterization of bacterial motility. PLoS Genet 3: 1644–60.
53. HobleyL, FungRK, LambertC, HarrisMA, DabhiJM, et al. (2012) Discrete cyclic di-GMP-dependent control of bacterial predation versus axenic growth in Bdellovibrio bacteriovorus. PLoS Pathog 8: e1002493.
54. PeelM, DonachieW, ShawA (1988) Temperature-dependent expression of flagella of Listeria monocytogenes studied by electron microscopy, SDS-PAGE and western blotting. J Gen Microbiol 134: 2171–78.
55. TiensuuT, AnderssonC, RydénP, JohanssonJ (2013) Cycles of light and dark co-ordinate reversible colony differentiation in Listeria monocytogenes. Mol Microbiol 87: 909–24.
56. YildizFH, SchoolnikGK (1999) Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc Natl Acad Sci U S A 96: 4028–33.
57. ZogajX, NimtzM, RohdeM, BokranzW, RömlingU (2001) The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39: 1452–63.
58. SpiersAJ, BohannonJ, GehrigSM, RaineyPB (2003) Biofilm formation at the air-liquid interface by the Pseudomonas fluorescens SBW25 wrinkly spreader requires an acetylated form of cellulose. Mol Microbiol 50: 15–27.
59. FriedmanL, KolterR (2004) Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J Bacteriol 186: 4457–65.
60. MerighiM, LeeVT, HyodoM, HayakawaY, LoryS (2007) The second messenger bis-(3-5)-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa. Mol Microbiol 65: 876–95.
61. O'GaraJP (2007) ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiol Lett 270: 179–88.
62. BobrovAG, KirillinaO, PerryRD (2007) Regulation of biofilm formation in Yersinia pestis. Adv Exp Med Biol 603: 201–10.
63. RömlingU (2002) Molecular biology of cellulose production in bacteria. Res Microbiol 153: 205–12.
64. MorganJL, StrumilloJ, ZimmerJ (2013) Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493: 181–6.
65. O'TooleGA, KolterR (1998) Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28: 449–61.
66. PanYJr, BreditF, KathariouS (2006) Resistance of Listeria monocytogenes biofilms to sanitizing agents in a simulated food processing environment. Appl Environ Microbiol 72: 7711–7.
67. Bou GhanemEN, JonesGS, Myers-MoralesT, PatilPD, HidayatullahAN, D'OrazioSEF (2012) InlA promotes dissemination of Listeria monocytogenes to the mesenteric lymph nodes during food borne infection of mice. PLoS Pathog 8 e1003015.
68. ItohY, WangX, HinnebuschBJ, PrestonJF3rd, RomeoT (2005) Depolymerization of beta-1,6-N-acetyl-D-glucosamine disrupts the integrity of diverse bacterial biofilms. J Bacteriol 187: 382–7.
69. SteinerS, LoriC, BoehmA, JenalU (2013) Allosteric activation of exopolysaccharide synthesis through cyclic di-GMP-stimulated protein-protein interaction. EMBO J 32: 354–68.
70. WhitneyJC, HowellPL (2013) Synthase-dependent exopolysaccharide secretion in Gram-negative bacteria. Trends Microbiol 21: 63–72.
71. PaulK, NietoV, CarlquistWC, BlairDF, HarsheyRM (2010) The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a “backstop brake” mechanism. Mol Cell 38: 128–39.
72. FangX, GomelskyM (2010) A posttranslational, c-di-GMP-dependent mechanism regulating bacterial flagellar motility. Mol Microbiol 76: 1295–1305.
73. WolfeAJ, BergHC (1989) Migration of bacteria in semisolid agar. Proc Natl Acad Sci USA 86: 6973–77.
74. BoehmA, KaiserM, LiH, SpanglerC, KasperCA, et al. (2010) Second messenger-mediated adjustment of bacterial swimming velocity. Cell 141: 107–16.
75. ChristenM, ChristenB, AllanMG, FolcherM, JenoP, et al. (2007) DgrA is a member of a new family of cyclic diguanosine monophosphate receptors and controls flagellar motor function in Caulobacter crescentus. Proc Natl Acad Sci U S A 104: 4112–17.
76. BlairKM, TurnerL, WinkelmanJT, BergHC, KearnsDB (2008) A molecular clutch disables flagella in the Bacillus subtilis biofilm. Science 320: 1636–8.
77. GuttenplanSB, BlairKM, KearnsDB (2010) The EpsE flagellar clutch is bifunctional and synergizes with EPS biosynthesis to promote Bacillus subtilis biofilm formation. PLoS Genet 6: e1001243.
78. ZorraquinoV, GarcíaB, LatasaC, EcheverzM, Toledo-AranaA, et al. (2013) Coordinated cyclic-di-GMP repression of Salmonella motility through YcgR and cellulose. J Bacteriol 195: 417–28.
79. CorrS, HillC, GahanCG (2006) An in vitro cell-culture model demonstrates internalin- and hemolysin-independent translocation of Listeria monocytogenes across M cells. Microb Pathog 41: 241–50.
80. JensenVB, HartyJT, JonesBD (1998) Interactions of the invasive pathogens Salmonella typhimurium, Listeria monocytogenes, and Shigella flexneri with M cells and murine Peyer's patches. Infect Immun 66: 3758–66.
81. MarcoAJ, AltimiraJ, PratsN, LópezS, DominguezL, et al. (1997) Penetration of Listeria monocytogenes in mice infected by the oral route. Microb Pathog 23: 255–63.
82. NiessJH, BrandS, GuX, LandsmanL, JungS, et al. (2005) CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307: 254–8.
83. RescignoM, UrbanoM, ValzasinaB, FrancoliniM, RottaG, et al. (2001) Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2: 361–7.
84. WoodwardJJ, IavaroneAT, PortnoyDA (2010) c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science 328: 1703–05.
85. SauerJD, Sotelo-TrohaK, von MoltkeJ, MonroeKM, RaeCS, et al. (2011) The N-ethyl-N-nitrosourea-induced Goldenticket mouse mutant reveals an essential function of STING in the in vivo interferon response to Listeria monocytogenes and cyclic dinucleotides. Infect Immun 79: 688–94.
86. BurdetteDL, MonroeKM, Sotelo-TrohaK, IwigJS, EckertB, et al. (2011) STING is a direct innate immune sensor of cyclic di-GMP. Nature 478: 515–8.
87. RayamajhiM, HumannJ, PenheiterK, AndreasenK, LenzLL (2010) Induction of IFN-alphabeta enables Listeria monocytogenes to suppress macrophage activation by IFN-gamma. J Exp Med 207: 327–37.
88. SchwartzKT, CarletonJD, QuillinSJ, RollinsSD, PortnoyDA, LeberJH (2012) Hyperinduction of host beta interferon by a Listeria monocytogenes strain naturally overexpressing the multidrug efflux pump MdrT. Infect Immun 80: 1537–45.
89. TsaiHN, HodgsonDA (2003) Development of a synthetic minimal medium for Listeria monocytogenes. Appl Environ Microbiol 69: 6943–45.
90. SmithK, YoungmanP (1992) Use of a new integrational vector to investigate compartment-specific expression of the Bacillus subtilis spoIIM gene. Biochimie 74: 705–11.
91. ParkSF, StewartGS (1990) High-efficiency transformation of Listeria monocytogenes by electroporation of penicillin-treated cells. Gene 94: 129–32.
92. LemonKP, HigginsDE, KolterR (2007) Flagellar motility is critical for Listeria monocytogenes biofilm formation. J Bacteriol 189: 4418–24.
93. JaradatZW, BhuniaAK (2003) Adhesion, invasion and translocation characteristics of Listeria monocytogenes serotypes in Caco-2 cell mouse models. Appl Environ Microbiol 69: 3640–45.
94. MostowyS, DanckaertA, ThamTN, MachuC, GuadagniniS, et al. (2009) Septin 11 restricts InlB-mediated invasion by Listeria. J Biol Chem 284: 11613–21.
95. RyuJ-H, BeuchatLR (2005) Biofilm formation by Esherichia coli O157:H7 on stainless steel: Effect of exopolysaccharide and curli production on its resistance to chlorine. Appl Environ Microbiol 71: 247–54.
96. BalestrinoD, HamonMA, DortetL, NahoriMA, Pizarro-CerdaJ, et al. (2010) Single-cell techniques using chromosomally tagged fluorescent bacteria to study Listeria monocytogenes infection processes. Appl Environ Microbiol 76: 3625–36.
97. MonkIR, GahanCG, HillC (2008) Tools for functional postgenomic analysis of Listeria monocytogenes. Appl Environ Microbiol 74: 3921–34.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 8
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Disruption of Fas-Fas Ligand Signaling, Apoptosis, and Innate Immunity by Bacterial Pathogens
- Ly6C Monocyte Recruitment Is Responsible for Th2 Associated Host-Protective Macrophage Accumulation in Liver Inflammation due to Schistosomiasis
- Host Responses to Group A Streptococcus: Cell Death and Inflammation
- Pathogenicity and Epithelial Immunity