Schistosome Feeding and Regurgitation
Schistosomes are parasitic flatworms that infect >200 million people worldwide, causing the chronic, debilitating disease schistosomiasis. Unusual among parasitic helminths, the long-lived adult worms, continuously bathed in blood, take up nutrients directly across the body surface and also by ingestion of blood into the gut. Recent proteomic analyses of the body surface revealed the presence of hydrolytic enzymes, solute, and ion transporters, thus emphasising its metabolic credentials. Furthermore, definition of the molecular mechanisms for the uptake of selected metabolites (glucose, certain amino acids, and water) establishes it as a vital site of nutrient acquisition. Nevertheless, the amount of blood ingested into the gut per day is considerable: for males ∼100 nl; for the more actively feeding females ∼900 nl, >4 times body volume. Ingested erythrocytes are lysed as they pass through the specialized esophagus, while leucocytes become tethered and disabled there. Proteomics and transcriptomics have revealed, in addition to gut proteases, an amino acid transporter in gut tissue and other hydrolases, ion, and lipid transporters in the lumen, implicating the gut as the site for acquisition of essential lipids and inorganic ions. The surface is the principal entry route for glucose, whereas the gut dominates amino acid acquisition, especially in females. Heme, a potentially toxic hemoglobin degradation product, accumulates in the gut and, since schistosomes lack an anus, must be expelled by the poorly understood process of regurgitation. Here we place the new observations on the proteome of body surface and gut, and the entry of different nutrient classes into schistosomes, into the context of older studies on worm composition and metabolism. We suggest that the balance between surface and gut in nutrition is determined by the constraints of solute diffusion imposed by differences in male and female worm morphology. Our conclusions have major implications for worm survival under immunological or pharmacological pressure.
Vyšlo v časopise:
Schistosome Feeding and Regurgitation. PLoS Pathog 10(8): e32767. doi:10.1371/journal.ppat.1004246
Kategorie:
Review
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004246
Souhrn
Schistosomes are parasitic flatworms that infect >200 million people worldwide, causing the chronic, debilitating disease schistosomiasis. Unusual among parasitic helminths, the long-lived adult worms, continuously bathed in blood, take up nutrients directly across the body surface and also by ingestion of blood into the gut. Recent proteomic analyses of the body surface revealed the presence of hydrolytic enzymes, solute, and ion transporters, thus emphasising its metabolic credentials. Furthermore, definition of the molecular mechanisms for the uptake of selected metabolites (glucose, certain amino acids, and water) establishes it as a vital site of nutrient acquisition. Nevertheless, the amount of blood ingested into the gut per day is considerable: for males ∼100 nl; for the more actively feeding females ∼900 nl, >4 times body volume. Ingested erythrocytes are lysed as they pass through the specialized esophagus, while leucocytes become tethered and disabled there. Proteomics and transcriptomics have revealed, in addition to gut proteases, an amino acid transporter in gut tissue and other hydrolases, ion, and lipid transporters in the lumen, implicating the gut as the site for acquisition of essential lipids and inorganic ions. The surface is the principal entry route for glucose, whereas the gut dominates amino acid acquisition, especially in females. Heme, a potentially toxic hemoglobin degradation product, accumulates in the gut and, since schistosomes lack an anus, must be expelled by the poorly understood process of regurgitation. Here we place the new observations on the proteome of body surface and gut, and the entry of different nutrient classes into schistosomes, into the context of older studies on worm composition and metabolism. We suggest that the balance between surface and gut in nutrition is determined by the constraints of solute diffusion imposed by differences in male and female worm morphology. Our conclusions have major implications for worm survival under immunological or pharmacological pressure.
Zdroje
1. ChengTC, BierJW (1972) Studies on molluscan schistosomiasis: an analysis of the development of the cercaria of Schistosoma mansoni. Parasitology 64: 129–141.
2. HockleyDJ (1972) Schistosoma mansoni: the development of the cercarial tegument. Parasitology 64: 245–252.
3. McLarenDJ, HockleyDJ (1977) Blood flukes have a double outer membrane. Nature 269: 147–149.
4. FrippPJ (1967) The sites of (1-14C) glucose assimilation in Schistosoma haematobium. Comp Biochem Physiol 23: 893–898.
5. SkellyPJ, TielensAGM, ShoemakerCB (1998) Glucose transport and metabolism in mammalian stage schistosomes. Parasitol Today 14: 402–406.
6. SkellyP, CunninghamJ, KimJ, ShoemakerC (1994) Cloning, characterization and functional expression of cDNAs encoding glucose transporter proteins from the human parasite, Schistosoma mansoni. J Biol Chem 269: 4247–4253.
7. JiangJ, SkellyPJ, ShoemakerCB, CaulfieldJP (1996) Schistosoma mansoni: the glucose transport protein SGTP4 is present in tegumental multilamellar bodies, discoid bodies, and the surface lipid bilayers. Exp Parasitol 82: 201–210.
8. Krautz-PetersonG, SimoesM, FaghiriZ, NdegwaD, OliveiraG, et al. (2010) Suppressing glucose transporter gene expression in schistosomes impairs parasite feeding and decreases survival in the mammalian host. PLoS Pathog 6: e1000932.
9. AschHL, ReadCP (1975) Transtegumental absorption of amino acids by male Schistosoma mansoni. J Parasitol 61: 378–379.
10. ChappellLH (1974) Methionine uptake of larval and adult Schistosoma mansoni. Int J Parasitol 4: 361–369.
11. HallSL, BraschiS, TruscottM, MathiesonW, CesariIM, et al. (2011) Insights into blood feeding by schistosomes from a proteomic analysis of worm vomitus. Mol Biochem Parasitol 179: 18–29.
12. AschHL, ReadCP (1975) Membrane transport in Schistosoma mansoni: transport of amino acids by adult males. Exp Parasitol 38: 123–135.
13. SkellyPJ, PfeifferR, VerreyF, ShoemakerCB (1999) SPRM1lc, a heterodimeric amino acid permease light chain of the human parasitic platyhelminth, Schistosoma mansoni. Parasitology 119 (Pt 6) 569–576.
14. Krautz-PetersonG, CamargoS, HuggelK, VerreyF, ShoemakerCB, et al. (2007) Amino Acid Transport in Schistosomes: Characterization of the Permease Heavy Chain SPRM1hc. J Biol Chem 282: 21767–21775.
15. BraschiS, BorgesWC, WilsonRA (2006) Proteomic analysis of the schistosome tegument and its surface membranes. Mem Inst Oswaldo Cruz 101 Suppl 1: 205–212.
16. FaghiriZ, SkellyPJ (2009) The role of tegumental aquaporin from the human parasitic worm, Schistosoma mansoni, in osmoregulation and drug uptake. The FASEB journal : official publication of the Federation of American Societies for Experimental Biology 23: 2780–2789.
17. Castro-BorgesW, SimpsonDM, DowleA, CurwenRS, Thomas-OatesJ, et al. (2011) Abundance of tegument surface proteins in the human blood fluke Schistosoma mansoni determined by QconCAT proteomics. J Proteomics 74: 1519–1533.
18. BraschiS, CurwenRS, AshtonPD, Verjovski-AlmeidaS, WilsonA (2006) The tegument surface membranes of the human blood parasite Schistosoma mansoni: a proteomic analysis after differential extraction. Proteomics 6: 1471–1482.
19. BraschiS, WilsonRA (2006) Proteins exposed at the adult schistosome surface revealed by biotinylation. Mol Cell Proteomics 5: 347–356.
20. BhardwajR, SkellyPJ (2011) Characterization of schistosome tegumental alkaline phosphatase (SmAP). PLoS Negl Trop Dis 5: e1011.
21. Da'daraAA, BhardwajR, AliYBM, SkellyP (2014) Schistosome tegumental ecto-apyrase (SmATPDase1) degrades exogenous pro-inflammatory and pro-thrombotic nucleotides. PeerJ 2: e316 doi:10.7717/peerj.316
22. LevyMG, ReadCP (1975) Relation of tegumentary phosphohydrolase to purine and pyrimidine transport in Schistosoma mansoni. J Parasitol 61: 648–656.
23. LevyMG, ReadCP (1975) Purine and pyrimidine transport in Schistosoma mansoni. J Parasitol 61: 627–632.
24. WilsonRA (2012) Proteomics at the schistosome-mammalian host interface: any prospects for diagnostics or vaccines? Parasitology 139: 1178–1194.
25. SpenceIM, SilkMH (1970) Ultrastructural studies of the blood fluke–Schistosoma mansoni. IV. The digestive system. S Afr J Med Sci 35: 93–112.
26. LiXH, de Castro-BorgesW, Parker-ManuelS, VanceGM, DemarcoR, et al. (2013) The schistosome oesophageal gland: initiator of blood processing. PLoS Negl Trop Dis 7: e2337.
27. MorrisGP (1968) Fine structure of the gut epithelium of Schistosoma mansoni. Experientia 24: 480–482.
28. ZussmanRA, BaumanPM, PetruskaJC (1970) The role of ingested hemoglobin in the nutrition of Schistosoma mansoni. J Parasitol 56: 75–79.
29. WilsonRA, BarnesPE (1979) Synthesis of macromolecules by the epithelial surfaces of Schistosoma mansoni: an autoradiographic study. Parasitology 78: 295–310.
30. FosterLA, BogitshBJ (1986) Utilization of the heme moiety of hemoglobin by Schistosoma mansoni schistosomules in vitro. J Parasitol 72: 669–676.
31. BlochEH (1980) In vivo microscopy of schistosomiasis. II. Migration of Schistosoma mansoni in the lungs, liver, and intestine. Am J Trop Med Hyg 29: 62–70.
32. LawrenceJD (1973) The ingestion of red blood cells by Schistosoma mansoni. J Parasitol 59: 60–63.
33. DikeSC (1971) Ultrastructure of the esophageal region in Schistosoma mansoni. Am J Trop Med Hyg 20: 552–568.
34. BogitshBJ, CarterOS (1977) Schistosoma mansoni: ultrastructural studies on the esophageal secretory granules. J Parasitol 63: 681–686.
35. HaltonDW (1997) Nutritional adaptations to parasitism within the platyhelminthes. Int J Parasitol 27: 693–704.
36. RofattoHK, Parker-ManuelSJ, BarbosaTC, TararamCA, Alan WilsonR, et al. (2012) Tissue expression patterns of Schistosoma mansoni Venom Allergen-Like proteins 6 and 7. Int J Parasitol 42: 613–620.
37. Senft AW (1976) Observations on the physiology of the gut of Schistosoma mansoni. In: Bossche HVd, editor. The biochemistry of parasites and host-parasite relationships. Oxford: North-Holland Publishing Co. pp. 335–342.
38. TortJ, BrindleyPJ, KnoxD, WolfeKH, DaltonJP (1999) Proteinases and associated genes of parasitic helminths. Adv Parasitol 43: 161–266.
39. KasnyM, MikesL, HamplV, DvorakJ, CaffreyCR, et al. (2009) Chapter 4. Peptidases of trematodes. Adv Parasitol 69: 205–297.
40. BogitshBJ, DaltonJP, BradyCP, BrindleyPJ (2001) Gut-associated immunolocalization of the Schistosoma mansoni cysteine proteases, SmCL1 and SmCL2. J Parasitol 87: 237–241.
41. Hola-JamriskaL, TortJF, DaltonJP, DaySR, FanJ, et al. (1998) Cathepsin C from Schistosoma japonicum–cDNA encoding the preproenzyme and its phylogenetic relationships. Eur J Biochem 255: 527–534.
42. BeckerMM, HarropSA, DaltonJP, KalinnaBH, McManusDP, et al. (1995) Cloning and characterization of the Schistosoma japonicum aspartic proteinase involved in hemoglobin degradation. J Biol Chem 270: 24496–24501.
43. MoralesME, RinaldiG, GobertGN, KinesKJ, TortJF, et al. (2008) RNA interference of Schistosoma mansoni cathepsin D, the apical enzyme of the hemoglobin proteolysis cascade. Mol Biochem Parasitol 157: 160–168.
44. Hola-JamriskaL, KingLT, DaltonJP, MannVH, AaskovJG, et al. (2000) Functional expression of dipeptidyl peptidase I (Cathepsin C) of the oriental blood fluke Schistosoma japonicum in Trichoplusia ni insect cells. Protein Expr Purif 19: 384–392.
45. McCarthyE, StackC, DonnellySM, DoyleS, MannVH, et al. (2004) Leucine aminopeptidase of the human blood flukes, Schistosoma mansoni and Schistosoma japonicum. Int J Parasitol 34: 703–714.
46. CorrentiJM, BrindleyPJ, PearceEJ (2005) Long-term suppression of cathepsin B levels by RNA interference retards schistosome growth. Mol Biochem Parasitol 143: 209–215.
47. BrinkworthRI, HarropSA, ProcivP, BrindleyPJ (2000) Host specificity in blood feeding parasites: a defining contribution by haemoglobin-degrading enzymes? Int J Parasitol 30: 785–790.
48. KoehlerJW, MoralesME, ShelbyBD, BrindleyPJ (2007) Aspartic protease activities of schistosomes cleave mammalian hemoglobins in a host-specific manner. Mem Inst Oswaldo Cruz 102: 83–85.
49. OliveiraMF, KyciaSW, GomezA, KosarAJ, BohleDS, et al. (2005) Structural and morphological characterization of hemozoin produced by Schistosoma mansoni and Rhodnius prolixus. FEBS Lett 579: 6010–6016.
50. SmythDJ, GlanfieldA, McManusDP, HackerE, BlairD, et al. (2006) Two isoforms of a divalent metal transporter (DMT1) in Schistosoma mansoni suggest a surface-associated pathway for iron absorption in schistosomes. J Biol Chem 281: 2242–2248.
51. BennettMW, CaulfieldJP (1991) Specific binding of human low-density lipoprotein to the surface of schistosomula of Schistosoma mansoni and ingestion by the parasite. Am J Pathol 138: 1173–1182.
52. XuX, CaulfieldJP (1992) Characterization of human low density lipoprotein binding proteins on the surface of schistosomula of Schistosoma mansoni. Eur J Cell Biol 57: 229–235.
53. RumjanekFD, CamposEG, AfonsoLC (1988) Evidence for the occurrence of LDL receptors in extracts of schistosomula of Schistosoma mansoni. Mol Biochem Parasitol 28: 145–152.
54. TemponeAJ, BianconiML, RumjanekFD (1997) The interaction of human LDL with the tegument of adult Schistosoma mansoni. Mol Cell Biochem 177: 139–144.
55. DonTA, BethonyJM, LoukasA (2008) Saposin-like proteins are expressed in the gastrodermis of Schistosoma mansoni and are immunogenic in natural infections. Int J Infect Dis 12: e39–47.
56. MercerJG, ChappellLH (1985) Schistosoma mansoni: effect of maintenance in vitro on the uptake and incorporation of leucine by adult worms. Mol Biochem Parasitol 15: 327–339.
57. BuedingE (1950) Carbohydrate metabolism of schistosoma mansoni. J Gen Physiol 33: 475–495.
58. GobertGN, McManusDP, NawaratnaS, MoertelL, MulvennaJ, et al. (2009) Tissue specific profiling of females of Schistosoma japonicum by integrated laser microdissection microscopy and microarray analysis. PLoS Negl Trop Dis 3: e469.
59. NawaratnaSS, McManusDP, MoertelL, GobertGN, JonesMK (2011) Gene Atlasing of digestive and reproductive tissues in Schistosoma mansoni. PLoS Negl Trop Dis 5: e1043.
60. WilsonRA (2012) The cell biology of schistosomes: a window on the evolution of the early metazoa. Protoplasma 249: 503–518.
61. TsiftsoglouAS, TsamadouAI, PapadopoulouLC (2006) Heme as key regulator of major mammalian cellular functions: molecular, cellular, and pharmacological aspects. Pharmacol Ther 111: 327–345.
62. TohSQ, GlanfieldA, GobertGN, JonesMK (2010) Heme and blood-feeding parasites: friends or foes? Parasit Vectors 3: 108.
63. Perez-SanchezR, Ramajo-HernandezA, Ramajo-MartinV, OleagaA (2006) Proteomic analysis of the tegument and excretory-secretory products of adult Schistosoma bovis worms. Proteomics 6 Suppl 1: S226–236.
64. PlanchartS, IncaniRN, CesariIM (2007) Preliminary characterization of an adult worm “vomit” preparation of Schistosoma mansoni and its potential use as antigen for diagnosis. Parasitol Res 101: 301–309.
65. KloetzelK, LewertRM (1966) Pigment formation in Schistosoma mansoni infections in the white mouse. Am J Trop Med Hyg 15: 28–31.
66. KloetzelK (1967) Egg and pigment production in Schistosoma mansoni infections of the white mouse. Am J Trop Med Hyg 16: 293–299.
67. TruscottM, EvansDA, GunnM, HoffmannKF (2013) Schistosoma mansoni hemozoin modulates alternative activation of macrophages via specific suppression of Retnla expression and secretion. Infect Immun 81: 133–142.
68. NashTE, DeelderAM (1985) Comparison of four schistosome excretory-secretory antigens: phenol sulfuric test active peak, cathodic circulating antigen, gut-associated proteoglycan, and circulating anodic antigen. Am J Trop Med Hyg 34: 236–241.
69. van DamGJ, BogitshBJ, van ZeylRJ, RotmansJP, DeelderAM (1996) Schistosoma mansoni: in vitro and in vivo excretion of CAA and CCA by developing schistosomula and adult worms. J Parasitol 82: 557–564.
70. DeelderAM, van DamGJ, KornelisD, FillieYE, van ZeylRJ (1996) Schistosoma: analysis of monoclonal antibodies reactive with the circulating antigens CAA and CCA. Parasitology 112 (Pt 1) 21–35.
71. BergwerffAA, van DamGJ, RotmansJP, DeelderAM, KamerlingJP, et al. (1994) The immunologically reactive part of immunopurified circulating anodic antigen from Schistosoma mansoni is a threonine-linked polysaccharide consisting of → 6)-(beta-D-GlcpA-(1→3))-beta-D-GalpNAc-(1→repeating units. J Biol Chem 269: 31510–31517.
72. Van DamGJ, BergwerffAA, Thomas-OatesJE, RotmansJP, KamerlingJP, et al. (1994) The immunologically reactive O-linked polysaccharide chains derived from circulating cathodic antigen isolated from the human blood fluke Schistosoma mansoni have Lewis x as repeating unit. Eur J Biochem 225: 467–482.
73. AbdeenHH, AttallahAF, MansourMM, HarrisonRA (1999) Molecular cloning and characterization of the polypeptide backbone of Schistosoma mansoni circulating cathodic antigen. Mol Biochem Parasitol 101: 149–159.
74. van LieshoutL, PoldermanAM, DeelderAM (2000) Immunodiagnosis of schistosomiasis by determination of the circulating antigens CAA and CCA, in particular in individuals with recent or light infections. Acta Trop 77: 69–80.
75. CoulibalyJT, N'GbessoYK, KnoppS, N'GuessanNA, SilueKD, et al. (2013) Accuracy of urine circulating cathodic antigen test for the diagnosis of Schistosoma mansoni in preschool-aged children before and after treatment. PLoS Negl Trop Dis 7: e2109.
76. ColleyDG, BinderS, CampbellC, KingCH, Tchuem TchuenteLA, et al. (2013) A five-country evaluation of a point-of-care circulating cathodic antigen urine assay for the prevalence of Schistosoma mansoni. Am J Trop Med Hyg 88: 426–432.
77. van DamGJ, SeinoJ, RotmansJP, DahaMR, DeelderAM (1993) Schistosoma mansoni circulating anodic antigen but not circulating cathodic antigen interacts with complement component C1q. Eur J Immunol 23: 2807–2812.
78. WilsonRA, WebsterLA (1974) Protonephridia. Biol Rev Camb Philos Soc 49: 127–160.
79. CollinsJJ3rd, KingRS, CogswellA, WilliamsDL, NewmarkPA (2011) An atlas for Schistosoma mansoni organs and life-cycle stages using cell type-specific markers and confocal microscopy. PLoS Negl Trop Dis 5: e1009.
80. FreitasTC, JungE, PearceEJ (2009) A bone morphogenetic protein homologue in the parasitic flatworm, Schistosoma mansoni. Int J Parasitol 39: 281–287.
81. Finken-EigenM, KunzW (1997) Schistosoma mansoni: gene structure and localization of a homologue to cysteine protease ER 60. Exp Parasitol 86: 1–7.
82. FinkenM, SobekA, SymmonsP, KunzW (1994) Characterization of the complete protein disulfide isomerase gene of Schistosoma mansoni and identification of the tissues of its expression. Mol Biochem Parasitol 64: 135–144.
83. SatoH, KuselJR, ThornhillJ (2002) Functional visualization of the excretory system of adult Schistosoma mansoni by the fluorescent marker resorufin. Parasitology 125: 527–535.
84. ProtasioAV, TsaiIJ, BabbageA, NicholS, HuntM, et al. (2012) A systematically improved high quality genome and transcriptome of the human blood fluke Schistosoma mansoni. PLoS Negl Trop Dis 6: e1455.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 8
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
Najčítanejšie v tomto čísle
- Disruption of Fas-Fas Ligand Signaling, Apoptosis, and Innate Immunity by Bacterial Pathogens
- Ly6C Monocyte Recruitment Is Responsible for Th2 Associated Host-Protective Macrophage Accumulation in Liver Inflammation due to Schistosomiasis
- Host Responses to Group A Streptococcus: Cell Death and Inflammation
- Pathogenicity and Epithelial Immunity