On the Front Line: Quantitative Virus Dynamics in Honeybee ( L.) Colonies along a New Expansion Front of the Parasite
Honeybees currently face a dramatic decline worldwide. The main honeybee parasite - Varroa destructor - plays a key role in these mortalities, since uncontrolled infestation inevitably results in the death of the colony. The pathological effects of Varroa infestations are partly attributed to the association of the mite with several honeybee viruses, primarily deformed wing virus (DWV). However the exact role that Varroa plays in the spread of honeybee viruses is still unknown. The recent arrival of Varroa in New Zealand provided a timely opportunity to gain insights into the complex relationship between bees, Varroa and viruses. Our data reveal that the different viruses have unique quantitative dynamics in relation to Varroa infestation, resulting in a shifting succession of virus infections that ultimately leaves DWV as the predominant infection. Assumption-free analysis shows consistent clustering of the data according to Varroa-infestation history, confirming a progressive change in the overall virus landscape co-incident with Varroa infestation. We also highlight possible interactions between several viruses. Our findings may have implications for the beekeeping industry, by highlighting the dynamic changes in the virus infections due to the arrival of Varroa, and how these are maintained.
Vyšlo v časopise:
On the Front Line: Quantitative Virus Dynamics in Honeybee ( L.) Colonies along a New Expansion Front of the Parasite. PLoS Pathog 10(8): e32767. doi:10.1371/journal.ppat.1004323
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004323
Souhrn
Honeybees currently face a dramatic decline worldwide. The main honeybee parasite - Varroa destructor - plays a key role in these mortalities, since uncontrolled infestation inevitably results in the death of the colony. The pathological effects of Varroa infestations are partly attributed to the association of the mite with several honeybee viruses, primarily deformed wing virus (DWV). However the exact role that Varroa plays in the spread of honeybee viruses is still unknown. The recent arrival of Varroa in New Zealand provided a timely opportunity to gain insights into the complex relationship between bees, Varroa and viruses. Our data reveal that the different viruses have unique quantitative dynamics in relation to Varroa infestation, resulting in a shifting succession of virus infections that ultimately leaves DWV as the predominant infection. Assumption-free analysis shows consistent clustering of the data according to Varroa-infestation history, confirming a progressive change in the overall virus landscape co-incident with Varroa infestation. We also highlight possible interactions between several viruses. Our findings may have implications for the beekeeping industry, by highlighting the dynamic changes in the virus infections due to the arrival of Varroa, and how these are maintained.
Zdroje
1. LoreauM, NaeemS, InchaustiP, BengtssonJ, GrimeJ, et al. (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294: 804–808.
2. PottsSG, BiesmeijerJC, KremenC, NeumannP, SchweigerO, et al. (2010) Global pollinator declines: trends, impacts and drivers. Trends in Ecology & Evolution 25: 345–353.
3. UNEP (2010) Global honey bee colony disorders and other threats to insect pollinators; Issues UE, editor: UNEP Emerging Issues.
4. OldroydBP (2007) What's killing American honey bees? PLoS biology 5: e168.
5. AlauxC, BrunetJ-L, DussaubatC, MondetF, TchamitchanS, et al. (2010) Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environmental Microbiology 12: 774–782.
6. HenryM, BeguinM, RequierF, RollinO, OdouxJ-F, et al. (2012) A common pesticide decreases foraging success and survival in honey bees. Science 336: 348–50.
7. Cox-FosterDL, ConlanS, HolmesEC, PalaciosG, EvansJD, et al. (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318: 283–287.
8. RatnieksFL, CarreckNL (2010) Clarity on honey bee collapse? Science 327: 152–153.
9. Le ConteY, EllisM, RitterW (2010) Varroa mites and honey bee health: can Varroa explain part of the colony losses? Apidologie 41: 353–363.
10. NeumannP, CarreckNL (2010) Honey bee colony losses. Journal of Apicultural Research 49: 1–6.
11. SammataroD, GersonU, NeedhamG (2000) Parasitic mites of honey bees: Life history, implications, and impact. Annual Review of Entomology 45: 519–548.
12. RosenkranzP, AumeierP, ZiegelmannB (2010) Biology and control of Varroa destructor. Journal of Invertebrate Pathology 103: S96–S119.
13. BallBV (1988) The impact of secondary infections in honey-bee colonies infested with the parasitic mite Varroa jacobsoni. Africanized honey bees and bee mites Ellis Horwood Ltd 457–461.
14. Bowen-WalkerPL, MartinSJ, GunnA (1999) The transmission of deformed wing virus between honeybees (Apis mellifera L.) by the ectoparasitic mite Varroa jacobsoni Oud. Journal of Invertebrate Pathology 73: 101–106.
15. MartinSJ (2001) The role of Varroa and viral pathogens in the collapse of honeybee colonies: a modelling approach. Journal of Applied Ecology 38: 1082–1093.
16. Ribière M, Ball BV, Aubert M (2008) Natural history and geographical distribution of honey bee viruses. Virology and the honey bee. Luxembourg: European Commission. pp. 15–84.
17. StaveleyJP, LawSA, FairbrotherA, MenzieCA (2013) A causal analysis of observed declines in managed honey bees (Apis mellifera). Human and Ecological Risk Assessment 20: 566–591.
18. EllisJ, MunnP (2005) The wordwide health status of honey bees. Bee World 86: 88–101.
19. ChenYP, SiedeR (2007) Honey bee viruses. Advances in Virus Research 70: 33–80.
20. RunckelC, FlennikenML, EngelJC, RubyJG, GanemD, et al. (2011) Temporal analysis of the honey bee microbiome reveals four novel viruses and seasonal prevalence of known viruses, Nosema and Crithidia. PLoS ONE 6: e20656.
21. de Miranda JR (2008) Diagnostic techniques for virus detection in honey bees. In: M.F.A. Aubert BVB, I Fries, N Milani, R.F.A Morritz, editors. Virology and the Honey Bee. Brussels: EC Publications. pp. 121–232.
22. GenerschE, AubertM (2010) Emerging and re-emerging viruses of the honey bee (Apis mellifera L.). Vet Res 41: 54.
23. de MirandaJR, CordoniG, BudgeG (2010) The acute bee paralysis virus–Kashmir bee virus–Israeli acute paralysis virus complex. Journal of Invertebrate Pathology 103: S30–S47.
24. de MirandaJR, GenerschE (2010) Deformed wing virus. Journal of Invertebrate Pathology 103: S48–S61.
25. DahleB (2010) Role of Varroa destructor for honey bee colony losses in Norway. Journal of Apicultural Research 49: 124–125.
26. TentchevaD, GauthierL, ZappullaN, DainatB, CousseransF, et al. (2004) Prevalence and seasonal variations of six bee viruses in Apis mellifera L. and Varroa destructor mite populations in France. Applied and Environmental Microbiology 70: 7185–7191.
27. MartinSJ, HighfieldAC, BrettellL, VillalobosEM, BudgeGE, et al. (2012) Global honey bee viral landscape altered by a parasitic mite. Science 336: 1304–1306.
28. SchroederDC, MartinSJ (2012) Deformed wing virus: The main suspect in unexplained honeybee deaths worldwide. Virulence 3: 589–591.
29. BallBV, AllenMF (1988) The prevalence of pathogens in honey bee (Apis mellifera) colonies infested with the parasitic mite Varroa jacobsoni. Annals of Applied Biology 113: 237–244.
30. HungAC, AdamsJR, ShimanukiH (1995) Bee parasitic mite syndrome (II). The role of Varroa mite and viruses. American Bee Journal 135: 702–704.
31. HungACF, BallBV, AdamsJR, ShimanukiH, KnoxDA (1996) A scientific note on the detection of American strains of acute paralysis virus and Kashmir bee virus in dead bees in one US honey bee (Apis mellifera L) colony. Apidologie 27: 55–56.
32. ToddJH, De MirandaJR, BallBV (2007) Incidence and molecular characterization of viruses found in dying New Zealand honey bee (Apis mellifera) colonies infested with Varroa destructor. Apidologie 38: 354–367.
33. de MirandaJR, FriesI (2008) Venereal and vertical transmission of deformed wing virus in honeybees (Apis mellifera L.). Journal of Invertebrate Pathology 98: 184–189.
34. HungACF, ShimanukiH, KnoxDA (1996) The role of viruses in bee parasitic mite syndrome. American Bee Journal 136: 731–732.
35. ChenYP, EvansJD, FeldlauferMF (2006) Horizontal and vertical transmission of viruses in the honey bee, Apis mellifera. Journal of Invertebrate Pathology 92: 152–159.
36. Hopkins I (1911) Australasian Bee Manual. Wellington, New Zealand: Gordon and Gotch Ltd. 173 p.
37. Matheson A (1984) Practical beekeeping in New Zealand. Wellington, New Zealand: Government Printer.
38. ZhangZQ (2000) Notes on Varroa destructor (Acari: Varroidae) parasitic on honeybees in New Zealand. Systematic & Applied Acarology 5: 9–14.
39. GoodwinM (2004) Will there be a shortage of beehives for pollination? N Z Kiwifruit J 166: 14–15.
40. NazziF, BrownSP, AnnosciaD, Del PiccoloF, Di PriscoG, et al. (2012) Synergistic parasite-pathogen interactions mediated by host immunity can drive the collapse of honeybee colonies. PLoS Pathogens 8: e1002735.
41. AllenM, BallBV (1996) The incidence and world distribution of honey bee viruses. Bee World 77: 141–162.
42. BerényiO, BakonyiT, DerakhshifarI, KöglbergerH, NowotnyN (2006) Occurrence of six honeybee viruses in diseased Austrian apiaries. Applied and Environmental Microbiology 72: 2414–2420.
43. TentchevaD, GauthierL, JouveS, Canabady-RochelleL, DainatB, et al. (2004) Polymerase Chain Reaction detection of deformed wing virus (DWV) in Apis mellifera and Varroa destructor. Apidologie 35: 431–439.
44. GauthierL, TentchevaD, TournaireM, DainatB, CousseransF, et al. (2007) Viral load estimation in asymptomatic honey bee colonies using the quantitative RT-PCR technique. Apidologie 38: 426–435.
45. ChantawannakulP, WardL, BoonhamN, BrownMA (2006) A scientific note on the detection of honeybee viruses using real-time PCR (TaqMan) in Varroa mites collected from a Thai honeybee (Apis mellifera) apiary. Journal of Invertebrate Pathology 91: 69–73.
46. ChenYP, HigginsJA, FeldlauferMF (2005) Quantitative real-time reverse transcription-PCR analysis of deformed wing virus infection in the honeybee (Apis mellifera L.). Applied and Environmental Microbiology 71: 436–441.
47. YueC, GenerschE (2005) RT-PCR analysis of Deformed wing virus in honeybees (Apis mellifera) and mites (Varroa destructor). Journal of General Virology 86: 3419–3424.
48. ShenM, YangX, Cox-FosterD, CuiL (2005) The role of varroa mites in infections of Kashmir bee virus (KBV) and deformed wing virus (DWV) in honey bees. Virology 342: 141–149.
49. OngusJR, PetersD, BonmatinJ-M, BengschE, VlakJM, et al. (2004) Complete sequence of a picorna-like virus of the genus Iflavirus replicating in the mite Varroa destructor. Journal of General Virology 85: 3747–3755.
50. NordströmS, FriesI, AarhusA, HansenH, KorpelaS (1999) Virus infections in Nordic honey bee colonies with no, low or severe Varroa jacobsoni infestations. Apidologie 30: 475–484.
51. CelleO, BlanchardP, OlivierV, SchurrF, CougouleN, et al. (2008) Detection of Chronic bee paralysis virus (CBPV) genome and its replicative RNA form in various hosts and possible ways of spread. Virus Research 133: 280–284.
52. Bailey L, Ball BV (1991) Honey Bee Pathology. London, UK: Academic Press.
53. ChenYP, PettisJS, FeldlauferMF (2005) Detection of multiple viruses in queens of the honey bee Apis mellifera L. Journal of Invertebrate Pathology 90: 118–121.
54. ForgáchP, BakonyiT, TapasztiZ, NowotnyN, RusvaiM (2008) Prevalence of pathogenic bee viruses in Hungarian apiaries: Situation before joining the European Union. Journal of Invertebrate Pathology 98: 235–238.
55. Poulin R (2007) Interactions between species and the parasite niche. Evolutionary Ecology of Parasites. Princetown: Princeton University Press.
56. ToplakI, Jamnikar CiglenečkiU, AronsteinK, GregorcA (2013) Chronic Bee Paralysis Virus and Nosema ceranae experimental co-infection of winter honey bee workers (Apis mellifera L.). Viruses 5: 2282–2297.
57. BaileyL, BallBV, PerryJ (1983) Association of viruses with two protozoal pathogens of the honey bee. Annals of Applied Biology 103: 13–20.
58. RetschnigG, WilliamsGR, MehmannMM, YañezO, de MirandaJR, et al. (2014) Sex-specific differences in pathogen susceptibility in honey bees (Apis mellifera). PLoS ONE 9: e85261.
59. SyllerJ (2012) Facilitative and antagonistic interactions between plant viruses in mixed infections. Molecular Plant Pathology 13: 204–216.
60. DaPalmaT, DoonanBP, TragerNM, KasmanLM (2010) A systematic approach to virus–virus interactions. Virus Research 149: 1–9.
61. ShimanukiH, CalderoneN, KnoxD (1994) Parasitic mite syndrome: the symptoms. American Bee Journal 134.
62. GisderS, AumeierP, GenerschE (2009) Deformed wing virus: replication and viral load in mites (Varroa destructor). Journal of General Virology 90: 463–467.
63. SumpterDJT, MartinSJ (2004) The dynamics of virus epidemics in Varroa-infested honey bee colonies. Journal of Animal Ecology 73: 51–63.
64. LockeB, ForsgrenE, FriesI, de MirandaJR (2012) Acaricide treatment affects viral dynamics in Varroa destructor-infested honey bee colonies via both host physiology and mite control. Applied and Environmental Microbiology 78: 227–235.
65. AndersonDL, GiaconH (1992) Reduced pollen collection by honey bee (Hymenoptera: Apidae) colonies infected with Nosema apis and sacbrood virus. Journal of Economic Entomology 85: 47–51.
66. BaileyL, FernandoE (1972) Effects of sacbrood virus on adult honeybees. Annals of Applied Biology 72: 27–35.
67. RibièreM, OlivierV, BlanchardP (2010) Chronic bee paralysis: A disease and a virus like no other? Journal of Invertebrate Pathology 103: S120–S131.
68. ChenY, PettisJS, EvansJD, KramerM, FeldlauferMF (2004) Transmission of Kashmir bee virus by the ectoparasitic mite Varroa destructor. Apidologie 35: 441–448.
69. Di PriscoG, PennacchioF, CaprioE, BoncristianiH, EvansDJ, et al. (2011) Varroa destructor is an effective vector of Israeli acute paralysis virus in the honeybee, Apis mellifera. Journal of General Virology 92: 151–155.
70. GregoryPG, EvansJD, RindererT, De GuzmanL (2005) Conditional immune-gene suppression of honeybees parasitized by Varroa mites. Journal of Insect Science 5: 7.
71. YangX, Cox-FosterDL (2005) Impact of an ectoparasite on the immunity and pathology of an invertebrate: Evidence for host immunosuppression and viral amplification. Proceedings of the National Academy of Sciences of the United States of America 102: 7470–7475.
72. PriscoGD, ZhangX, PennacchioF, CaprioE, LiJ, et al. (2011) Dynamics of persistent and acute deformed wing virus infections in honey bees, Apis mellifera. Viruses 3: 2425–2441.
73. FrancisRM, NielsenSL, KrygerP (2013) Varroa-Virus interaction in collapsing honey bee colonies. PLoS ONE 8: e57540.
74. HedtkeK, JensenPM, JensenAB, GenerschE (2011) Evidence for emerging parasites and pathogens influencing outbreaks of stress-related diseases like chalkbrood. Journal of Invertebrate Pathology 108: 167–173.
75. TentchevaD, GauthierL, BagnyL, FievetJ, DainatB, et al. (2006) Comparative analysis of deformed wing virus (DWV) RNA in Apis mellifera and Varroa destructor. Apidologie 37: 41–50.
76. HighfieldAC, El NagarA, MackinderLCM, NoëlLM-LJ, HallMJ, et al. (2009) Deformed wing virus implicated in overwintering honeybee colony losses. Applied and Environmental Microbiology 75: 7212–7220.
77. Nordström S (2000) Virus infections and varroa mite infestations in honey bee colonies [PhD Thesis]. Uppsala, Sweden: Swedish University of Agricultural Sciences.
78. MartinS, BallB, CarreckN (2013) The role of deformed wing virus in the initial collapse of varroa infested honey bee colonies in the UK. Journal of Apicultural Research 52: 251–258.
79. NeumannP, YañezO, FriesI, de MirandaJR (2012) Varroa invasion and virus adaptation. Trends in Parasitology 28: 353–354.
80. De Miranda JR, Gauthier L, Ribière M, Chen YP (2012) Honey bee viruses and their effect on bee and colony health. In: Press C, editor. Honey bee colony health: Challenges and Sustainable solutions. Oxford, England: Taylor and Francis Group. pp. 71–102.
81. MacedoPA, WuJ, EllisMD (2002) Using inert dusts to detect and assess varroa infestations in honey bee colonies. Journal of Apicultural Research 40: 2–6.
82. EvansJD, SchwarzR, ChenYP, BudgeG, CornmanRS, et al. (2013) Standard methods for molecular research in Apis mellifera. Journal of Apicultural Research 52: 1–53.
83. LourençoA, MackertA, CristinoA, SimõesZ (2008) Validation of reference genes for gene expression studies in the honey bee, Apis mellifera, by quantitative real-time RT-PCR. Apidologie 39: 372–385.
84. YañezO, JafféR, JaroschA, FriesI, MoritzRA, et al. (2012) Deformed wing virus and drone mating flights in the honey bee (Apis mellifera): implications for sexual transmission of a major honey bee virus. Apidologie 43: 17–30.
85. PfafflMW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Research 29: e45.
86. BolkerBM, BrooksME, ClarkCJ, GeangeSW, PoulsenJR, et al. (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution 24: 127–135.
87. BaayenRH, DavidsonDJ, BatesDM (2008) Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language 59: 390–412.
88. GrueberCE, NakagawaS, LawsRJ, JamiesonIG (2011) Multimodel inference in ecology and evolution: challenges and solutions. Journal of Evolutionary Biology 24: 699–711.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 8
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Disruption of Fas-Fas Ligand Signaling, Apoptosis, and Innate Immunity by Bacterial Pathogens
- Ly6C Monocyte Recruitment Is Responsible for Th2 Associated Host-Protective Macrophage Accumulation in Liver Inflammation due to Schistosomiasis
- Host Responses to Group A Streptococcus: Cell Death and Inflammation
- Pathogenicity and Epithelial Immunity