#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Host Responses to Group A Streptococcus: Cell Death and Inflammation


Infections caused by group A Streptococcus (GAS) are characterized by robust inflammatory responses and can rapidly lead to life-threatening disease manifestations. However, host mechanisms that respond to GAS, which may influence disease pathology, are understudied. Recent works indicate that GAS infection is recognized by multiple extracellular and intracellular receptors and activates cell signalling via discrete pathways. Host leukocyte receptor binding to GAS-derived products mediates release of inflammatory mediators associated with severe GAS disease. GAS induces divergent phagocyte programmed cell death responses and has inflammatory implications. Epithelial cell apoptotic and autophagic components are mobilized by GAS infection, but can be subverted to ensure bacterial survival. Examination of host interactions with GAS and consequences of GAS infection in the context of cellular receptors responsible for GAS recognition, inflammatory mediator responses, and cell death mechanisms, highlights potential avenues for diagnostic and therapeutic intervention. Understanding the molecular and cellular basis of host symptoms during severe GAS disease will assist the development of improved treatment regimens for this formidable pathogen.


Vyšlo v časopise: Host Responses to Group A Streptococcus: Cell Death and Inflammation. PLoS Pathog 10(8): e32767. doi:10.1371/journal.ppat.1004266
Kategorie: Review
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004266

Souhrn

Infections caused by group A Streptococcus (GAS) are characterized by robust inflammatory responses and can rapidly lead to life-threatening disease manifestations. However, host mechanisms that respond to GAS, which may influence disease pathology, are understudied. Recent works indicate that GAS infection is recognized by multiple extracellular and intracellular receptors and activates cell signalling via discrete pathways. Host leukocyte receptor binding to GAS-derived products mediates release of inflammatory mediators associated with severe GAS disease. GAS induces divergent phagocyte programmed cell death responses and has inflammatory implications. Epithelial cell apoptotic and autophagic components are mobilized by GAS infection, but can be subverted to ensure bacterial survival. Examination of host interactions with GAS and consequences of GAS infection in the context of cellular receptors responsible for GAS recognition, inflammatory mediator responses, and cell death mechanisms, highlights potential avenues for diagnostic and therapeutic intervention. Understanding the molecular and cellular basis of host symptoms during severe GAS disease will assist the development of improved treatment regimens for this formidable pathogen.


Zdroje

1. WalkerMJ, BarnettTC, McArthurJD, ColeJN, GillenCM, et al. (2014) Disease manifestations and pathogenic mechanisms of group A Streptococcus. Clin Microbiol Rev 27: 264–301.

2. StevensDL, BisnoAL, ChambersHF, EverettED, DellingerP, et al. (2005) Practice guidelines for the diagnosis and management of skin and soft-tissue infections. Clin Infect Dis 41: 1373–1406.

3. StevensDL (2000) Streptococcal toxic shock syndrome associated with necrotizing fasciitis. Annu Rev Med 51: 271–288.

4. CarapetisJR, SteerAC, MulhollandEK, WeberM (2005) The global burden of group A streptococcal diseases. Lancet Infect Dis 5: 685–694.

5. LamagniTL, DarenbergJ, Luca-HarariB, SiljanderT, EfstratiouA, et al. (2008) Epidemiology of severe Streptococcus pyogenes disease in Europe. J Clin Microbiol 46: 2359–2367.

6. ColeJN, BarnettTC, NizetV, WalkerMJ (2011) Molecular insight into invasive group A streptococcal disease. Nat Rev Microbiol 9: 724–736.

7. TakedaK, KaishoT, AkiraS (2003) Toll-like receptors. Annu Rev Immunol 21: 335–376.

8. LoofTG, GoldmannO, GessnerA, HerwaldH, MedinaE (2010) Aberrant inflammatory response to Streptococcus pyogenes in mice lacking myeloid differentiation factor 88. Am J Pathol 176: 754–763.

9. LoofTG, GoldmannO, MedinaE (2008) Immune recognition of Streptococcus pyogenes by dendritic cells. Infect Immun 76: 2785–2792.

10. JoostenLA, KoendersMI, SmeetsRL, Heuvelmans-JacobsM, HelsenMM, et al. (2003) Toll-like receptor 2 pathway drives streptococcal cell wall-induced joint inflammation: critical role of myeloid differentiation factor 88. J Immunol 171: 6145–6153.

11. GoldmannO, RohdeM, ChhatwalGS, MedinaE (2004) Role of macrophages in host resistance to group A streptococci. Infect Immun 72: 2956–2963.

12. LoofTG, RohdeM, ChhatwalGS, JungS, MedinaE (2007) The contribution of dendritic cells to host defenses against Streptococcus pyogenes. J Infect Dis 196: 1794–1803.

13. GoldmannO, LengelingA, BoseJ, BloeckerH, GeffersR, et al. (2005) The role of the MHC on resistance to group A streptococci in mice. J Immunol 175: 3862–3872.

14. ParkJM, NgVH, MaedaS, RestRF, KarinM (2004) Anthrolysin O and other Gram-positive cytolysins are toll-like receptor 4 agonists. J Exp Med 200: 1647–1655.

15. von BernuthH, PicardC, JinZ, PanklaR, XiaoH, et al. (2008) Pyogenic bacterial infections in humans with MyD88 deficiency. Science 321: 691–696.

16. GratzN, SillerM, SchaljoB, PirzadaZA, GattermeierI, et al. (2008) Group A Streptococcus activates type I interferon production and MyD88-dependent signaling without involvement of TLR2, TLR4, and TLR9. J Biol Chem 283: 19879–19887.

17. GratzN, HartwegerH, MattU, KratochvillF, JanosM, et al. (2011) Type I interferon production induced by Streptococcus pyogenes-derived nucleic acids is required for host protection. PLoS Pathog 7: e1001345.

18. ZinkernagelAS, HruzP, UchiyamaS, von Kockritz-BlickwedeM, SchuepbachRA, et al. (2012) Importance of Toll-like receptor 9 in host defense against M1T1 group A Streptococcus infections. J Innate Immun 4: 213–218.

19. HarderJ, FranchiL, Munoz-PlanilloR, ParkJH, ReimerT, et al. (2009) Activation of the Nlrp3 inflammasome by Streptococcus pyogenes requires streptolysin O and NF-kappa B activation but proceeds independently of TLR signaling and P2X7 receptor. J Immunol 183: 5823–5829.

20. HorstSA, LinnerA, BeinekeA, LehneS, HoltjeC, et al. (2013) Prognostic value and therapeutic potential of TREM-1 in Streptococcus pyogenes-induced sepsis. J Innate Immun 5: 581–590.

21. BaruchM, BelotserkovskyI, HertzogBB, RavinsM, DovE, et al. (2014) An extracellular bacterial pathogen modulates host metabolism to regulate its own sensing and proliferation. Cell 156: 97–108.

22. LappinE, FergusonAJ (2009) Gram-positive toxic shock syndromes. Lancet Infect Dis 9: 281–290.

23. FraserJD, ProftT (2008) The bacterial superantigen and superantigen-like proteins. Immunol Rev 225: 226–243.

24. CommonsRJ, SmeestersPR, ProftT, FraserJD, Robins-BrowneR, et al. (2014) Streptococcal superantigens: categorization and clinical associations. Trends Mol Med 20: 48–62.

25. Norrby-TeglundA, JohanssonL (2013) Beyond the traditional immune response: bacterial interaction with phagocytic cells. Int J Antimicrob Agents 42: 13–16.

26. HerwaldH, CramerH, MorgelinM, RussellW, SollenbergU, et al. (2004) M protein, a classical bacterial virulence determinant, forms complexes with fibrinogen that induce vascular leakage. Cell 116: 367–379.

27. PahlmanLI, MorgelinM, EckertJ, JohanssonL, RussellW, et al. (2006) Streptococcal M protein: a multipotent and powerful inducer of inflammation. J Immunol 177: 1221–1228.

28. KahnF, MorgelinM, ShannonO, Norrby-TeglundA, HerwaldH, et al. (2008) Antibodies against a surface protein of Streptococcus pyogenes promote a pathological inflammatory response. PLoS Pathog 4: e1000149.

29. SoehnleinO, OehmckeS, MaX, RothfuchsAG, FrithiofR, et al. (2008) Neutrophil degranulation mediates severe lung damage triggered by streptococcal M1 protein. Eur Respir J 32: 405–412.

30. McNamaraC, ZinkernagelAS, MacheboeufP, CunninghamMW, NizetV, et al. (2008) Coiled-coil irregularities and instabilities in group A Streptococcus M1 are required for virulence. Science 319: 1405–1408.

31. MacheboeufP, BuffaloC, FuCY, ZinkernagelAS, ColeJN, et al. (2011) Streptococcal M1 protein constructs a pathological host fibrinogen network. Nature 472: 64–68.

32. JohanssonL, LinnerA, Sunden-CullbergJ, HaggarA, HerwaldH, et al. (2009) Neutrophil-derived hyperresistinemia in severe acute streptococcal infections. J Immunol 183: 4047–4054.

33. SierigG, CywesC, WesselsMR, AshbaughCD (2003) Cytotoxic effects of streptolysin O and streptolysin S enhance the virulence of poorly encapsulated group A streptococci. Infect Immun 71: 446–455.

34. GoldmannO, SastallaI, Wos-OxleyM, RohdeM, MedinaE (2009) Streptococcus pyogenes induces oncosis in macrophages through the activation of an inflammatory programmed cell death pathway. Cell Microbiol 11: 138–155.

35. BryantAE, BayerCR, ChenRY, GuthPH, WallaceRJ, et al. (2005) Vascular dysfunction and ischemic destruction of tissue in Streptococcus pyogenes infection: the role of streptolysin O-induced platelet/neutrophil complexes. J Infect Dis 192: 1014–1022.

36. NilssonM, SorensenOE, MorgelinM, WeineisenM, SjobringU, et al. (2006) Activation of human polymorphonuclear neutrophils by streptolysin O from Streptococcus pyogenes leads to the release of proinflammatory mediators. Thromb Haemost 95: 982–990.

37. BrosnahanAJ, MantzMJ, SquierCA, PetersonML, SchlievertPM (2009) Cytolysins augment superantigen penetration of stratified mucosa. J Immunol 182: 2364–2373.

38. BrickerAL, CywesC, AshbaughCD, WesselsMR (2002) NAD(+)-glycohydrolase acts as an intracellular toxin to enhance the extracellular survival of group A streptococci. Mol Microbiol 44: 257–269.

39. GoldmannO, ChhatwalGS, MedinaE (2003) Immune mechanisms underlying host susceptibility to infection with group A streptococci. J Infect Dis 187: 854–861.

40. KotbM, Norrby-TeglundA, McGeerA, El-SherbiniH, DorakMT, et al. (2002) An immunogenetic and molecular basis for differences in outcomes of invasive group A streptococcal infections. Nat Med 8: 1398–1404.

41. AbdeltawabNF, AzizRK, KansalR, RoweSL, SuY, et al. (2008) An unbiased systems genetics approach to mapping genetic loci modulating susceptibility to severe streptococcal sepsis. PLoS Pathog 4: e1000042.

42. GoldmannO, HertzenE, HechtA, SchmidtH, LehneS, et al. (2010) Inducible cyclooxygenase released prostaglandin E2 modulates the severity of infection caused by Streptococcus pyogenes. J Immunol 185: 2372–2381.

43. KennedyAD, DeleoFR (2009) Neutrophil apoptosis and the resolution of infection. Immunol Res 43: 25–61.

44. RenY, XieY, JiangG, FanJ, YeungJ, et al. (2008) Apoptotic cells protect mice against lipopolysaccharide-induced shock. J Immunol 180: 4978–4985.

45. KonoH, RockKL (2008) How dying cells alert the immune system to danger. Nat Rev Immunol 8: 279–289.

46. KobayashiSD, BraughtonKR, WhitneyAR, VoyichJM, SchwanTG, et al. (2003) Bacterial pathogens modulate an apoptosis differentiation program in human neutrophils. Proc Natl Acad Sci U S A 100: 10948–10953.

47. KobayashiSD, VoyichJM, BraughtonKR, DeLeoFR (2003) Down-regulation of proinflammatory capacity during apoptosis in human polymorphonuclear leukocytes. J Immunol 170: 3357–3368.

48. DattaV, MyskowskiSM, KwinnLA, ChiemDN, VarkiN, et al. (2005) Mutational analysis of the group A streptococcal operon encoding streptolysin S and its virulence role in invasive infection. Mol Microbiol 56: 681–695.

49. Miyoshi-AkiyamaT, TakamatsuD, KoyanagiM, ZhaoJZ, ImanishiK, et al. (2005) Cytocidal effect of Streptococcus pyogenes on mouse neutrophils in vivo and the critical role of streptolysin S. J Infect Dis 192: 107–116.

50. CortesG, WesselsMR (2009) Inhibition of dendritic cell maturation by group A Streptococcus. J Infect Dis 200: 1152–1161.

51. TimmerAM, TimmerJC, PenceMA, HsuLC, GhochaniM, et al. (2009) Streptolysin O promotes group A Streptococcus immune evasion by accelerated macrophage apoptosis. J Biol Chem 284: 862–871.

52. SilvaMT (2011) Macrophage phagocytosis of neutrophils at inflammatory/infectious foci: a cooperative mechanism in the control of infection and infectious inflammation. J Leukoc Biol 89: 675–683.

53. SilvaMT (2010) Bacteria-induced phagocyte secondary necrosis as a pathogenicity mechanism. J Leukoc Biol 88: 885–896.

54. BrinkmannV, ReichardU, GoosmannC, FaulerB, UhlemannY, et al. (2004) Neutrophil extracellular traps kill bacteria. Science 303: 1532–1535.

55. BuchananJT, SimpsonAJ, AzizRK, LiuGY, KristianSA, et al. (2006) DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps. Curr Biol 16: 396–400.

56. FuchsTA, AbedU, GoosmannC, HurwitzR, SchulzeI, et al. (2007) Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 176: 231–241.

57. LuT, KobayashiSD, QuinnMT, DeleoFR (2012) A NET outcome. Front Immunol 3: 365.

58. YippBG, PetriB, SalinaD, JenneCN, ScottBN, et al. (2012) Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med 18: 1386–1393.

59. Nitsche-SchmitzDP, RohdeM, ChhatwalGS (2007) Invasion mechanisms of Gram-positive pathogenic cocci. Thromb Haemost 98: 488–496.

60. TsaiPJ, LinYS, KuoCF, LeiHY, WuJJ (1999) Group A Streptococcus induces apoptosis in human epithelial cells. Infect Immun 67: 4334–4339.

61. TsaiWH, ChangCW, ChuangWJ, LinYS, WuJJ, et al. (2004) Streptococcal pyrogenic exotoxin B-induced apoptosis in A549 cells is mediated by a receptor- and mitochondrion-dependent pathway. Infect Immun 72: 7055–7062.

62. TsaiWH, ChangCW, LinYS, ChuangWJ, WuJJ, et al. (2008) Streptococcal pyrogenic exotoxin B-induced apoptosis in A549 cells is mediated through alpha(v)beta(3) integrin and Fas. Infect Immun 76: 1349–1357.

63. ChangCW, TsaiWH, ChuangWJ, LinYS, WuJJ, et al. (2009) Procaspase 8 and Bax are up-regulated by distinct pathways in streptococcal pyrogenic exotoxin B-induced apoptosis. J Biol Chem 284: 33195–33205.

64. LeeWT, ChangCW (2010) Bax is upregulated by p53 signal pathway in the SPE B-induced apoptosis. Mol Cellular Biochem 343: 271–279.

65. NakagawaI, NakataM, KawabataS, HamadaS (2001) Cytochrome c-mediated caspase-9 activation triggers apoptosis in Streptococcus pyogenes-infected epithelial cells. Cell Microbiol 3: 395–405.

66. AikawaC, NozawaT, MaruyamaF, TsumotoK, HamadaS, et al. (2010) Reactive oxygen species induced by Streptococcus pyogenes invasion trigger apoptotic cell death in infected epithelial cells. Cell Microbiol 12: 814–830.

67. Cywes BentleyC, HakanssonA, ChristiansonJ, WesselsMR (2005) Extracellular group A Streptococcus induces keratinocyte apoptosis by dysregulating calcium signalling. Cell Microbiol 7: 945–955.

68. KlenkM, KoczanD, GuthkeR, NakataM, ThiesenHJ, et al. (2005) Global epithelial cell transcriptional responses reveal Streptococcus pyogenes Fas regulator activity association with bacterial aggressiveness. Cell Microbiol 7: 1237–1250.

69. NakagawaI, NakataM, KawabataS, HamadaS (2004) Transcriptome analysis and gene expression profiles of early apoptosis-related genes in Streptococcus pyogenes-infected epithelial cells. Cell Microbiol 6: 939–952.

70. KlenkM, NakataM, PodbielskiA, SkupinB, SchrotenH, et al. (2007) Streptococcus pyogenes serotype-dependent and independent changes in infected HEp-2 epithelial cells. ISME J 1: 678–692.

71. NakagawaI, AmanoA, MizushimaN, YamamotoA, YamaguchiH, et al. (2004) Autophagy defends cells against invading group A Streptococcus. Science 306: 1037–1040.

72. JoubertPE, MeiffrenG, GregoireIP, PontiniG, RichettaC, et al. (2009) Autophagy induction by the pathogen receptor CD46. Cell Host Microbe 6: 354–366.

73. YamaguchiH, NakagawaI, YamamotoA, AmanoA, NodaT, et al. (2009) An initial step of GAS-containing autophagosome-like vacuoles formation requires Rab7. PLoS Pathog 5: e1000670.

74. SakuraiA, MaruyamaF, FunaoJ, NozawaT, AikawaC, et al. (2010) Specific behavior of intracellular Streptococcus pyogenes that has undergone autophagic degradation is associated with bacterial streptolysin O and host small G proteins Rab5 and Rab7. J Biol Chem 285: 22666–22675.

75. NozawaT, AikawaC, GodaA, MaruyamaF, HamadaS, et al. (2012) The small GTPases Rab9A and Rab23 function at distinct steps in autophagy during group A Streptococcus infection. Cell Microbiol 14: 1149–1165.

76. O'SeaghdhaM, WesselsMR (2013) Streptolysin O and its co-toxin NAD-glycohydrolase protect group A Streptococcus from xenophagic killing. PLoS Pathog 9: e1003394.

77. BarnettTC, LieblD, SeymourLM, GillenCM, LimJY, et al. (2013) The globally disseminated M1T1 clone of group A Streptococcus evades autophagy for intracellular replication. Cell Host Microbe 14: 675–682.

78. KroemerG, GalluzziL, VandenabeeleP, AbramsJ, AlnemriES, et al. (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Diff 16: 3–11.

79. GalluzziL, VitaleI, AbramsJM, AlnemriES, BaehreckeEH, et al. (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Diff 19: 107–120.

80. RobinsonN, McCombS, MulliganR, DudaniR, KrishnanL, et al. (2012) Type I interferon induces necroptosis in macrophages during infection with Salmonella enterica serovar Typhimurium. Nat Immunol 13: 954–962.

81. ChoY, ChallaS, MoquinD, GengaR, RayTD, et al. (2009) Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137: 1112–1123.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2014 Číslo 8
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#