Cleavage of a Neuroinvasive Human Respiratory Virus Spike Glycoprotein by Proprotein Convertases Modulates Neurovirulence and Virus Spread within the Central Nervous System
Human coronaviruses (HCoV) are respiratory pathogens involved in a sizable proportion of common colds. They have over the years been associated with the development of neurological diseases, given their demonstrated neuroinvasive and neurotropic properties. The viral spike (S) glycoprotein appears to be associated with these neurologic features and is a major factor of virulence for several coronavirus species, including HCoV-OC43. To further characterize the role of this protein in neurovirulence and virus spread within the CNS, we sought to identify amino acid residues that may be important for this function. Our data revealed that one of them, G758R, introduces a functional furin-like cleavage site in the S protein (RRSR↓R758). This change in S protein mostly impacts neurovirulence, which seems associated with a modified viral dissemination, without significantly affecting its neuroinvasive capacity. This mutation, found in all characterized contemporary human clinical respiratory isolates, underlines previous findings that naturally existing field isolates of HCoV-OC43 variants still possess the capacity to invade the CNS where they could eventually adapt and establish a persistent human CNS infection, a mechanism potentially associated with human encephalitis or neurodegenerative pathologies of unknown etiologies.
Vyšlo v časopise:
Cleavage of a Neuroinvasive Human Respiratory Virus Spike Glycoprotein by Proprotein Convertases Modulates Neurovirulence and Virus Spread within the Central Nervous System. PLoS Pathog 11(11): e32767. doi:10.1371/journal.ppat.1005261
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1005261
Souhrn
Human coronaviruses (HCoV) are respiratory pathogens involved in a sizable proportion of common colds. They have over the years been associated with the development of neurological diseases, given their demonstrated neuroinvasive and neurotropic properties. The viral spike (S) glycoprotein appears to be associated with these neurologic features and is a major factor of virulence for several coronavirus species, including HCoV-OC43. To further characterize the role of this protein in neurovirulence and virus spread within the CNS, we sought to identify amino acid residues that may be important for this function. Our data revealed that one of them, G758R, introduces a functional furin-like cleavage site in the S protein (RRSR↓R758). This change in S protein mostly impacts neurovirulence, which seems associated with a modified viral dissemination, without significantly affecting its neuroinvasive capacity. This mutation, found in all characterized contemporary human clinical respiratory isolates, underlines previous findings that naturally existing field isolates of HCoV-OC43 variants still possess the capacity to invade the CNS where they could eventually adapt and establish a persistent human CNS infection, a mechanism potentially associated with human encephalitis or neurodegenerative pathologies of unknown etiologies.
Zdroje
1. Talbot PJ, Jacomy H, Desforges M. Pathogenesis of human coronaviruses other than severe acute respiratory syndrome coronavirus. In: Perlman S, Gallagher T, Snijder EJ, editors. The Nidoviruses. ASM Press; 2008. pp. 313–24.
2. Forgie S, Marrie TJ. Healthcare-associated atypical pneumonia. Seminars in respiratory and critical care medicine. 2009;30(1):67–85. Epub 2009/02/10. doi: 10.1055/s-0028-1119811 19199189.
3. Freymuth F, Vabret A, Dina J, Cuvillon-Nimal D, Lubin C, Vaudecrane A, et al. [Bronchiolitis viruses]. Archives de pediatrie: organe officiel de la Societe francaise de pediatrie. 2010;17(8):1192–201. Epub 2010/06/19. doi: 10.1016/j.arcped.2010.05.006 20558050.
4. Vabret A, Dina J, Brison E, Brouard J, Freymuth F. [Human coronaviruses]. Pathologie-biologie. 2009;57(2):149–60. Epub 2008/05/06. doi: 10.1016/j.patbio.2008.02.018 18456429.
5. Desforges M, Le Coupanec A, Brison E, Meessen-Pinard M, Talbot PJ. Neuroinvasive and neurotropic human respiratory coronaviruses: potential neurovirulent agents in humans. Advances in experimental medicine and biology. 2014;807:75–96. Epub 2014/03/13. doi: 10.1007/978-81-322-1777-0_6 24619619.
6. Arbour N, Cote G, Lachance C, Tardieu M, Cashman NR, Talbot PJ. Acute and persistent infection of human neural cell lines by human coronavirus OC43. Journal of virology. 1999;73(4):3338–50. Epub 1999/03/12. 10074188; PubMed Central PMCID: PMC104098.
7. Arbour N, Ekande S, Cote G, Lachance C, Chagnon F, Tardieu M, et al. Persistent infection of human oligodendrocytic and neuroglial cell lines by human coronavirus 229E. Journal of virology. 1999;73(4):3326–37. Epub 1999/03/12. 10074187; PubMed Central PMCID: PMC104097.
8. Bonavia A, Arbour N, Yong VW, Talbot PJ. Infection of primary cultures of human neural cells by human coronaviruses 229E and OC43. Journal of virology. 1997;71(1):800–6. ISI:A1997VX29200105.
9. Arbour N, Day R, Newcombe J, Talbot PJ. Neuroinvasion by human respiratory coronaviruses. Journal of virology. 2000;74(19):8913–21. Epub 2000/09/12. 10982334; PubMed Central PMCID: PMC102086.
10. Jacomy H, Fragoso G, Almazan G, Mushynski WE, Talbot PJ. Human coronavirus OC43 infection induces chronic encephalitis leading to disabilities in BALB/C mice. Virology. 2006;349(2):335–46. Epub 2006/03/11. doi: 10.1016/j.virol.2006.01.049 16527322.
11. Jacomy H, Talbot PJ. Vacuolating encephalitis in mice infected by human coronavirus OC43. Virology. 2003;315(1):20–33. Epub 2003/11/01. 14592756.
12. Vlasak R, Luytjes W, Spaan W, Palese P. Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses. Proceedings of the National Academy of Sciences of the United States of America. 1988;85(12):4526–9. Epub 1988/06/01. 3380803; PubMed Central PMCID: PMC280463.
13. St-Jean JR, Desforges M, Talbot PJ. Genetic evolution of human coronavirus OC43 in neural cell culture. Advances in experimental medicine and biology. 2006;581:499–502. Epub 2006/10/14. doi: 10.1007/978-0-387-33012-9_88 17037584.
14. Jacomy H, St-Jean JR, Brison E, Marceau G, Desforges M, Talbot PJ. Mutations in the spike glycoprotein of human coronavirus OC43 modulate disease in BALB/c mice from encephalitis to flaccid paralysis and demyelination. Journal of neurovirology. 2010;16(4):279–93. Epub 2010/07/21. doi: 10.3109/13550284.2010.497806 20642316.
15. Vabret A, Dina J, Mourez T, Gouarin S, Petitjean J, van der Werf S, et al. Inter- and intra-variant genetic heterogeneity of human coronavirus OC43 strains in France. The Journal of general virology. 2006;87(Pt 11):3349–53. Epub 2006/10/13. doi: 10.1099/vir.0.82065–0 17030869.
16. de Haan CA, Haijema BJ, Schellen P, Wichgers Schreur P, te Lintelo E, Vennema H, et al. Cleavage of group 1 coronavirus spike proteins: how furin cleavage is traded off against heparan sulfate binding upon cell culture adaptation. Journal of virology. 2008;82(12):6078–83. Epub 2008/04/11. doi: 10.1128/JVI.00074-08 18400867; PubMed Central PMCID: PMC2395124.
17. Bosch BJ, van der Zee R, de Haan CA, Rottier PJ. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. Journal of virology. 2003;77(16):8801–11. Epub 2003/07/30. 12885899; PubMed Central PMCID: PMC167208.
18. Gallagher TM, Buchmeier MJ. Coronavirus spike proteins in viral entry and pathogenesis. Virology. 2001;279(2):371–4. Epub 2001/02/13. doi: 10.1006/viro.2000.0757 11162792.
19. Klenk HD, Garten W. Host cell proteases controlling virus pathogenicity. Trends in microbiology. 1994;2(2):39–43. Epub 1994/02/01. 8162439.
20. Millet JK, Whittaker GR. Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis. Virus research. 2014. Epub 2014/12/03. doi: 10.1016/j.virusres.2014.11.021 25445340.
21. de Haan CA, Stadler K, Godeke GJ, Bosch BJ, Rottier PJ. Cleavage inhibition of the murine coronavirus spike protein by a furin-like enzyme affects cell-cell but not virus-cell fusion. Journal of virology. 2004;78(11):6048–54. Epub 2004/05/14. doi: 10.1128/JVI.78.11.6048–6054.2004 15141003; PubMed Central PMCID: PMC415802.
22. Follis KE, York J, Nunberg JH. Furin cleavage of the SARS coronavirus spike glycoprotein enhances cell-cell fusion but does not affect virion entry. Virology. 2006;350(2):358–69. Epub 2006/03/08. doi: 10.1016/j.virol.2006.02.003 16519916.
23. Simmons G, Bertram S, Glowacka I, Steffen I, Chaipan C, Agudelo J, et al. Different host cell proteases activate the SARS-coronavirus spike-protein for cell-cell and virus-cell fusion. Virology. 2011;413(2):265–74. Epub 2011/03/26. doi: 10.1016/j.virol.2011.02.020 21435673; PubMed Central PMCID: PMC3086175.
24. Yamada Y, Liu DX. Proteolytic activation of the spike protein at a novel RRRR/S motif is implicated in furin-dependent entry, syncytium formation, and infectivity of coronavirus infectious bronchitis virus in cultured cells. Journal of virology. 2009;83(17):8744–58. Epub 2009/06/26. doi: 10.1128/JVI.00613-09 19553314; PubMed Central PMCID: PMC2738192.
25. St-Jean JR, Desforges M, Almazan F, Jacomy H, Enjuanes L, Talbot PJ. Recovery of a neurovirulent human coronavirus OC43 from an infectious cDNA clone. Journal of virology. 2006;80(7):3670–4. Epub 2006/03/16. doi: 10.1128/JVI.80.7.3670–3674.2006 16537637; PubMed Central PMCID: PMC1440365.
26. Burrer R, Buchmeier MJ, Wolfe T, Ting JP, Feuer R, Iglesias A, et al. Exacerbated pathology of viral encephalitis in mice with central nervous system-specific autoantibodies. The American journal of pathology. 2007;170(2):557–66. Epub 2007/01/27. doi: 10.2353/ajpath.2007.060893 17255324; PubMed Central PMCID: PMC1851853.
27. Favreau DJ, Desforges M, St-Jean JR, Talbot PJ. A human coronavirus OC43 variant harboring persistence-associated mutations in the S glycoprotein differentially induces the unfolded protein response in human neurons as compared to wild-type virus. Virology. 2009;395(2):255–67. Epub 2009/10/23. doi: 10.1016/j.virol.2009.09.026 19846189.
28. de Groot RJ, Baker SC, Baric R, Enjuanes L, Gorbalenya AE, Holmes KV, Perlman S, Poon L, Rottier PJM, Talbot PJ, Woo PCY, and Ziebuhr J. Coronaviridae. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ, editors. Virus Taxonomy: Ninth report of the International Commitee on Taxonomy of Viruses. Elsevier, New York. 2012. pp. 806–828.
29. Phillips JJ, Chua MM, Lavi E, Weiss SR. Pathogenesis of chimeric MHV4/MHV-A59 recombinant viruses: the murine coronavirus spike protein is a major determinant of neurovirulence. Journal of virology. 1999;73(9):7752–60. Epub 1999/08/10. 10438865; PubMed Central PMCID: PMC104302.
30. Quick ED, Leser JS, Clarke P, Tyler KL. Activation of intrinsic immune responses and microglial phagocytosis in an ex vivo spinal cord slice culture model of West Nile virus infection. Journal of virology. 2014;88(22):13005–14. Epub 2014/08/29. doi: 10.1128/JVI.01994-14 25165111; PubMed Central PMCID: PMC4249089.
31. Das Sarma J, Iacono K, Gard L, Marek R, Kenyon LC, Koval M, et al. Demyelinating and nondemyelinating strains of mouse hepatitis virus differ in their neural cell tropism. Journal of virology. 2008;82(11):5519–26. Epub 2008/04/04. doi: 10.1128/JVI.01488-07 18385249; PubMed Central PMCID: PMC2395180.
32. Licitra BN, Millet JK, Regan AD, Hamilton BS, Rinaldi VD, Duhamel GE, et al. Mutation in spike protein cleavage site and pathogenesis of feline coronavirus. Emerging infectious diseases. 2013;19(7):1066–73. Epub 2013/06/15. doi: 10.3201/eid1907.121094 23763835; PubMed Central PMCID: PMC3713968.
33. Sturman LS, Ricard CS, Holmes KV. Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: activation of cell-fusing activity of virions by trypsin and separation of two different 90K cleavage fragments. Journal of virology. 1985;56(3):904–11. 2999443; PubMed Central PMCID: PMCPMC252663.
34. Luytjes W, Sturman LS, Bredenbeek PJ, Charite J, van der Zeijst BA, Horzinek MC, et al. Primary structure of the glycoprotein E2 of coronavirus MHV-A59 and identification of the trypsin cleavage site. Virology. 1987;161(2):479–87. Epub 1987/12/01. 2825419.
35. Millet JK, Whittaker GR. Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(42):15214–9. Epub 2014/10/08. doi: 10.1073/pnas.1407087111 25288733; PubMed Central PMCID: PMC4210292.
36. Thomas G. Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nature reviews Molecular cell biology. 2002;3(10):753–66. Epub 2002/10/03. doi: 10.1038/nrm934 12360192; PubMed Central PMCID: PMC1964754.
37. Leparc-Goffart I, Hingley ST, Chua MM, Jiang X, Lavi E, Weiss SR. Altered pathogenesis of a mutant of the murine coronavirus MHV-A59 is associated with a Q159L amino acid substitution in the spike protein. Virology. 1997;239(1):1–10. Epub 1998/01/14. doi: 10.1006/viro.1997.8877 9426441.
38. Regan AD, Shraybman R, Cohen RD, Whittaker GR. Differential role for low pH and cathepsin-mediated cleavage of the viral spike protein during entry of serotype II feline coronaviruses. Veterinary microbiology. 2008;132(3–4):235–48. Epub 2008/07/09. doi: 10.1016/j.vetmic.2008.05.019 18606506; PubMed Central PMCID: PMC2588466.
39. Frana MF, Behnke JN, Sturman LS, Holmes KV. Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: host-dependent differences in proteolytic cleavage and cell fusion. Journal of virology. 1985;56(3):912–20. 2999444; PubMed Central PMCID: PMCPMC252664.
40. Hingley ST, Leparc-Goffart I, Seo SH, Tsai JC, Weiss SR. The virulence of mouse hepatitis virus strain A59 is not dependent on efficient spike protein cleavage and cell-to-cell fusion. Journal of neurovirology. 2002;8(5):400–10. doi: 10.1080/13550280260422703 12402166.
41. Zhang XM, Kousoulas KG, Storz J. Comparison of the nucleotide and deduced amino acid sequences of the S genes specified by virulent and avirulent strains of bovine coronaviruses. Virology. 1991;183(1):397–404. 2053289.
42. Bergeron E, Vincent MJ, Wickham L, Hamelin J, Basak A, Nichol ST, et al. Implication of proprotein convertases in the processing and spread of severe acute respiratory syndrome coronavirus. Biochemical and biophysical research communications. 2005;326(3):554–63. Epub 2004/12/15. doi: 10.1016/j.bbrc.2004.11.063 15596135.
43. Finzi A, Xiang SH, Pacheco B, Wang L, Haight J, Kassa A, et al. Topological layers in the HIV-1 gp120 inner domain regulate gp41 interaction and CD4-triggered conformational transitions. Mol Cell. 2010;37(5):656–67. doi: 10.1016/j.molcel.2010.02.012 20227370; PubMed Central PMCID: PMC2854584.
44. McKeating JA, McKnight A, Moore JP. Differential loss of envelope glycoprotein gp120 from virions of human immunodeficiency virus type 1 isolates: effects on infectivity and neutralization. Journal of virology. 1991;65(2):852–60. 1898972; PubMed Central PMCID: PMC239825.
45. Peeples ME, Bratt MA. Mutation in the matrix protein of Newcastle disease virus can result in decreased fusion glycoprotein incorporation into particles and decreased infectivity. Journal of virology. 1984;51(1):81–90. Epub 1984/07/01. 6547186; PubMed Central PMCID: PMC254403.
46. Shulla A, Gallagher T. Role of spike protein endodomains in regulating coronavirus entry. J Biol Chem. 2009;284(47):32725–34. doi: 10.1074/jbc.M109.043547 19801669; PubMed Central PMCID: PMC2781689.
47. Gierer S, Muller MA, Heurich A, Ritz D, Springstein BL, Karsten CB, et al. Inhibition of proprotein convertases abrogates processing of the middle eastern respiratory syndrome coronavirus spike protein in infected cells but does not reduce viral infectivity. The Journal of infectious diseases. 2015;211(6):889–97. Epub 2014/07/25. doi: 10.1093/infdis/jiu407 25057042.
48. Sattentau Q. Avoiding the void: cell-to-cell spread of human viruses. Nature reviews Microbiology. 2008;6(11):815–26. doi: 10.1038/nrmicro1972 18923409.
49. Igakura T, Stinchcombe JC, Goon PK, Taylor GP, Weber JN, Griffiths GM, et al. Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton. Science. 2003;299(5613):1713–6. doi: 10.1126/science.1080115 12589003.
50. Pique C, Jones KS. Pathways of cell-cell transmission of HTLV-1. Front Microbiol. 2012;3:378. doi: 10.3389/fmicb.2012.00378 23109932; PubMed Central PMCID: PMCPMC3479854.
51. Bos EC, Heijnen L, Luytjes W, Spaan WJ. Mutational analysis of the murine coronavirus spike protein: effect on cell-to-cell fusion. Virology. 1995;214(2):453–63. doi: 10.1006/viro.1995.0056 8553547.
52. Stauber R, Pfleiderera M, Siddell S. Proteolytic cleavage of the murine coronavirus surface glycoprotein is not required for fusion activity. The Journal of general virology. 1993;74 (Pt 2):183–91. doi: 10.1099/0022-1317-74-2-183 8381459.
53. Taguchi F. Fusion formation by the uncleaved spike protein of murine coronavirus JHMV variant cl-2. Journal of virology. 1993;67(3):1195–202. 8437210; PubMed Central PMCID: PMCPMC237484.
54. Tsai CW, Chang SC, Chang MF. A 12-amino acid stretch in the hypervariable region of the spike protein S1 subunit is critical for cell fusion activity of mouse hepatitis virus. J Biol Chem. 1999;274(37):26085–90. 10473557.
55. Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses. 2012;4(6):1011–33. Epub 2012/07/21. doi: 10.3390/v4061011 22816037; PubMed Central PMCID: PMC3397359.
56. Heald-Sargent T, Gallagher T. Ready, set, fuse! The coronavirus spike protein and acquisition of fusion competence. Viruses. 2012;4(4):557–80. Epub 2012/05/17. doi: 10.3390/v4040557 22590686; PubMed Central PMCID: PMC3347323.
57. Seidah NG, Prat A. The biology and therapeutic targeting of the proprotein convertases. Nature reviews Drug discovery. 2012;11(5):367–83. Epub 2012/06/12. 22679642.
58. Adami C, Pooley J, Glomb J, Stecker E, Fazal F, Fleming JO, et al. Evolution of mouse hepatitis virus (MHV) during chronic infection: quasispecies nature of the persisting MHV RNA. Virology. 1995;209(2):337–46. Epub 1995/06/01. doi: 10.1006/viro.1995.1265 7778268.
59. St-Jean JR, Jacomy H, Desforges M, Vabret A, Freymuth F, Talbot PJ. Human respiratory coronavirus OC43: genetic stability and neuroinvasion. Journal of virology. 2004;78(16):8824–34. Epub 2004/07/29. doi: 10.1128/JVI.78.16.8824–8834.2004 15280490; PubMed Central PMCID: PMC479063.
60. Yeh EA, Collins A, Cohen ME, Duffner PK, Faden H. Detection of coronavirus in the central nervous system of a child with acute disseminated encephalomyelitis. Pediatrics. 2004;113(1 Pt 1):e73–6. Epub 2004/01/02. 14702500.
61. Hill DP, Robertson KA. Differentiation of LA-N-5 neuroblastoma cells into cholinergic neurons: methods for differentiation, immunohistochemistry and reporter gene introduction. Brain research Brain research protocols. 1998;2(3):183–90. Epub 1998/05/09. 9507116.
62. Lambert F, Jacomy H, Marceau G, Talbot PJ. Titration of human coronaviruses using an immunoperoxidase assay. Journal of visualized experiments: JoVE. 2008;(14). Epub 2008/12/11. doi: 10.3791/751 19066576; PubMed Central PMCID: PMC2582848.
63. Vijgen L, Keyaerts E, Moes E, Maes P, Duson G, Van Ranst M. Development of one-step, real-time, quantitative reverse transcriptase PCR assays for absolute quantitation of human coronaviruses OC43 and 229E. Journal of clinical microbiology. 2005;43(11):5452–6. Epub 2005/11/08. doi: 10.1128/JCM.43.11.5452–5456.2005 16272469; PubMed Central PMCID: PMC1287813.
64. Fronhoffs S, Totzke G, Stier S, Wernert N, Rothe M, Bruning T, et al. A method for the rapid construction of cRNA standard curves in quantitative real-time reverse transcription polymerase chain reaction. Molecular and cellular probes. 2002;16(2):99–110. Epub 2002/05/29. doi: 10.1006/mcpr.2002.0405 12030760.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2015 Číslo 11
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Dengue Virus Non-structural Protein 1 Modulates Infectious Particle Production via Interaction with the Structural Proteins
- On the Discovery of TOR As the Target of Rapamycin
- Parasite Glycobiology: A Bittersweet Symphony
- Lactate Dehydrogenase Is Associated with the Parasitophorous Vacuole Membrane and Is a Potential Target for Developing Therapeutics