#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Memory Th1 Cells Are Protective in Invasive Infection


Staphylococcus aureus is a leading cause of skin, soft tissue and bone infections and, most seriously, bloodstream infection. When S. aureus does get into the bloodstream, it is more likely to kill than any other bacterial infection, despite all the treatments modern medicine has to offer. It has thus far developed resistance to all antibiotics licensed to treat it. Thus, there is an urgent need to develop a vaccine against S. aureus. However, such a vaccine remains elusive. This is largely due to the fact that we have a very limited understanding of how our immune system fights this infection. Here, we examine how certain T cells of the mouse immune system effectively recognise and respond to S. aureus, and show that transferring these cells to other mice improves their ability to clear infection. We then demonstrate that a vaccine which drives these specific T cells also improves clearance of infection. Until recently, it was not known if human T cells could recognise and respond to S. aureus. Here we show, for the first time, that these cells are expanded in patients with S. aureus bloodstream infection, and suggest that they should be targeted in anti-S. aureus vaccines.


Vyšlo v časopise: Memory Th1 Cells Are Protective in Invasive Infection. PLoS Pathog 11(11): e32767. doi:10.1371/journal.ppat.1005226
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1005226

Souhrn

Staphylococcus aureus is a leading cause of skin, soft tissue and bone infections and, most seriously, bloodstream infection. When S. aureus does get into the bloodstream, it is more likely to kill than any other bacterial infection, despite all the treatments modern medicine has to offer. It has thus far developed resistance to all antibiotics licensed to treat it. Thus, there is an urgent need to develop a vaccine against S. aureus. However, such a vaccine remains elusive. This is largely due to the fact that we have a very limited understanding of how our immune system fights this infection. Here, we examine how certain T cells of the mouse immune system effectively recognise and respond to S. aureus, and show that transferring these cells to other mice improves their ability to clear infection. We then demonstrate that a vaccine which drives these specific T cells also improves clearance of infection. Until recently, it was not known if human T cells could recognise and respond to S. aureus. Here we show, for the first time, that these cells are expanded in patients with S. aureus bloodstream infection, and suggest that they should be targeted in anti-S. aureus vaccines.


Zdroje

1. Melzer M, Welch C (2013) Thirty-day mortality in UK patients with community-onset and hospital-acquired meticillin-susceptible Staphylococcus aureus bacteraemia. J Hosp Infect 84: 143–150. doi: 10.1016/j.jhin.2012.12.013 23602415

2. Greiner W, Rasch A, Kohler D, Salzberger B, Fatkenheuer G, et al. (2007) Clinical outcome and costs of nosocomial and community-acquired Staphylococcus aureus bloodstream infection in haemodialysis patients. Clin Microbiol Infect 13: 264–268. 17391380

3. Stryjewski ME, Corey GR (2014) Methicillin-Resistant Staphylococcus aureus: An Evolving Pathogen. Clinical Infectious Diseases 58: S10–S19. doi: 10.1093/cid/cit613 24343827

4. Salgado-Pabon W, Schlievert PM (2014) Models matter: the search for an effective Staphylococcus aureus vaccine. Nat Rev Microbiol 12: 585–591. doi: 10.1038/nrmicro3308 24998740

5. Foster TJ (2005) Immune evasion by staphylococci. Nat Rev Micro 3: 948–958.

6. Fowler VG, Proctor RA (2014) Where does a Staphylococcus aureus vaccine stand? Clinical Microbiology and Infection 20: 66–75. doi: 10.1111/1469-0691.12570 24476315

7. Laupland KB, Church DL, Mucenski M, Sutherland LR, Davies HD (2003) Population-based study of the epidemiology of and the risk factors for invasive Staphylococcus aureus infections. J Infect Dis 187: 1452–1459. 12717627

8. Spellberg B, Ibrahim AS, Yeaman MR, Lin L, Fu Y, et al. (2008) The antifungal vaccine derived from the recombinant N terminus of Als3p protects mice against the bacterium Staphylococcus aureus. Infect Immun 76: 4574–4580. doi: 10.1128/IAI.00700-08 18644876

9. Dryla A, Prustomersky S, Gelbmann D, Hanner M, Bettinger E, et al. (2005) Comparison of antibody repertoires against Staphylococcus aureus in healthy individuals and in acutely infected patients. Clin Diagn Lab Immunol 12: 387–398. 15753252

10. Adhikari RP, Ajao AO, Aman MJ, Karauzum H, Sarwar J, et al. (2012) Lower antibody levels to Staphylococcus aureus exotoxins are associated with sepsis in hospitalized adults with invasive S. aureus infections. J Infect Dis 206: 915–923. doi: 10.1093/infdis/jis462 22807524

11. Verkaik NJ, Boelens HA, de Vogel CP, Tavakol M, Bode LG, et al. (2010) Heterogeneity of the humoral immune response following Staphylococcus aureus bacteremia. Eur J Clin Microbiol Infect Dis 29: 509–518. doi: 10.1007/s10096-010-0888-0 20186449

12. Kolata J, Bode LGM, Holtfreter S, Steil L, Kusch H, et al. (2011) Distinctive patterns in the human antibody response to Staphylococcus aureus bacteremia in carriers and non-carriers. PROTEOMICS 11: 3914–3927. doi: 10.1002/pmic.201000760 21805632

13. Spellberg B, Daum R (2012) Development of a vaccine against Staphylococcus aureus. Semin Immunopathol 34: 335–348. doi: 10.1007/s00281-011-0293-5 22080194

14. Laupland KB, Ross T, Gregson DB (2008) Staphylococcus aureus bloodstream infections: risk factors, outcomes, and the influence of methicillin resistance in Calgary, Canada, 2000–2006. J Infect Dis 198: 336–343. doi: 10.1086/589717 18522502

15. Litjens NH, Huisman M, van den Dorpel M, Betjes MG (2008) Impaired immune responses and antigen-specific memory CD4+ T cells in hemodialysis patients. J Am Soc Nephrol 19: 1483–1490. doi: 10.1681/ASN.2007090971 18480314

16. Chang FY, Shaio MF (1995) Decreased cell-mediated immunity in patients with non-insulin-dependent diabetes mellitus. Diabetes Res Clin Pract 28: 137–146. 7587921

17. Wiese L, Mejer N, Schonheyder HC, Westh H, Jensen AG, et al. (2013) A nationwide study of comorbidity and risk of reinfection after Staphylococcus aureus bacteraemia. J Infect 67: 199–205. doi: 10.1016/j.jinf.2013.04.018 23664855

18. Holland SM, DeLeo FR, Elloumi HZ, Hsu AP, Uzel G, et al. (2007) STAT3 mutations in the hyper-IgE syndrome. N Engl J Med 357: 1608–1619. 17881745

19. Milner JD, Brenchley JM, Laurence A, Freeman AF, Hill BJ, et al. (2008) Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452: 773–776. doi: 10.1038/nature06764 18337720

20. Minegishi Y, Saito M, Nagasawa M, Takada H, Hara T, et al. (2009) Molecular explanation for the contradiction between systemic Th17 defect and localized bacterial infection in hyper-IgE syndrome. J Exp Med 206: 1291–1301. doi: 10.1084/jem.20082767 19487419

21. Wolach B, Gavrieli R, Roos D, Berger-Achituv S (2012) Lessons learned from phagocytic function studies in a large cohort of patients with recurrent infections. J Clin Immunol 32: 454–466. doi: 10.1007/s10875-011-9633-4 22207252

22. van den Berg JM, van Koppen E, Åhlin A, Belohradsky BH, Bernatowska E, et al. (2009) Chronic Granulomatous Disease: The European Experience. PLoS ONE 4: e5234. doi: 10.1371/journal.pone.0005234 19381301

23. Schroder K, Hertzog PJ, Ravasi T, Hume DA (2004) Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75: 163–189. 14525967

24. Ye P, Rodriguez FH, Kanaly S, Stocking KL, Schurr J, et al. (2001) Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med 194: 519–527. 11514607

25. Schmaler M, Jann NJ, Ferracin F, Landmann R (2011) T and B cells are not required for clearing Staphylococcus aureus in systemic infection despite a strong TLR2-MyD88-dependent T cell activation. J Immunol 186: 443–452. doi: 10.4049/jimmunol.1001407 21131426

26. Maher BM, Mulcahy ME, Murphy AG, Wilk M, O'Keeffe KM, et al. (2013) Nlrp-3-driven interleukin 17 production by gammadeltaT cells controls infection outcomes during Staphylococcus aureus surgical site infection. Infect Immun 81: 4478–4489. doi: 10.1128/IAI.01026-13 24082072

27. Montgomery CP, Daniels M, Zhao F, Alegre ML, Chong AS, et al. (2014) Protective immunity against recurrent Staphylococcus aureus skin infection requires antibody and interleukin-17A. Infect Immun 82: 2125–2134. doi: 10.1128/IAI.01491-14 24614654

28. McLoughlin RM, Solinga RM, Rich J, Zaleski KJ, Cocchiaro JL, et al. (2006) CD4+ T cells and CXC chemokines modulate the pathogenesis of Staphylococcus aureus wound infections. Proc Natl Acad Sci U S A 103: 10408–10413. 16801559

29. Lin L, Ibrahim AS, Xu X, Farber JM, Avanesian V, et al. (2009) Th1-Th17 cells mediate protective adaptive immunity against Staphylococcus aureus and Candida albicans infection in mice. PLoS Pathog 5: e1000703. doi: 10.1371/journal.ppat.1000703 20041174

30. Murphy AG, O'Keeffe KM, Lalor SJ, Maher BM, Mills KH, et al. (2014) Staphylococcus aureus infection of mice expands a population of memory gammadelta T cells that are protective against subsequent infection. J Immunol 192: 3697–3708. doi: 10.4049/jimmunol.1303420 24623128

31. Ishigame H, Kakuta S, Nagai T, Kadoki M, Nambu A, et al. (2009) Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity 30: 108–119. doi: 10.1016/j.immuni.2008.11.009 19144317

32. Misstear K, McNeela EA, Murphy AG, Geoghegan JA, O'Keeffe KM, et al. (2014) Targeted nasal vaccination provides antibody-independent protection against Staphylococcus aureus. J Infect Dis 209: 1479–1484. doi: 10.1093/infdis/jit636 24273045

33. Narita K, Hu DL, Mori F, Wakabayashi K, Iwakura Y, et al. (2010) Role of interleukin-17A in cell-mediated protection against Staphylococcus aureus infection in mice immunized with the fibrinogen-binding domain of clumping factor A. Infect Immun 78: 4234–4242. doi: 10.1128/IAI.00447-10 20679443

34. Kolata JB, Kuhbandner I, Link C, Normann N, Vu CH, et al. (2015) The Fall of a Dogma? Unexpected High T-Cell Memory Response to Staphylococcus aureus in Humans. J Infect Dis.

35. O'Keeffe KM, Wilk MM, Leech JM, Murphy AG, Laabei M, et al. (2015) Manipulation of autophagy in phagocytes facilitates Staphylococcus aureus bloodstream infection. Infection and Immunity 83: 3445–3457. doi: 10.1128/IAI.00358-15 26099586

36. Monneret G, Venet F, Pachot A, Lepape A (2008) Monitoring immune dysfunctions in the septic patient: a new skin for the old ceremony. Mol Med 14: 64–78. 18026569

37. Anderson AS, Miller AA, Donald RG, Scully IL, Nanra JS, et al. (2012) Development of a multicomponent Staphylococcus aureus vaccine designed to counter multiple bacterial virulence factors. Hum Vaccin Immunother 8: 1585–1594. doi: 10.4161/hv.21872 22922765

38. Wertheim HFL, Vos MC, Ott A, van Belkum A, Voss A, et al. (2004) Risk and outcome of nosocomial Staphylococcus aureus bacteraemia in nasal carriers versus non-carriers. The Lancet 364: 703–705.

39. Yeaman MR, Filler SG, Chaili S, Barr K, Wang H, et al. (2014) Mechanisms of NDV-3 vaccine efficacy in MRSA skin versus invasive infection. Proc Natl Acad Sci U S A 111: E5555–5563. doi: 10.1073/pnas.1415610111 25489065

40. Cho JS, Pietras EM, Garcia NC, Ramos RI, Farzam DM, et al. (2010) IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. J Clin Invest 120: 1762–1773. doi: 10.1172/JCI40891 20364087

41. Cheng P, Liu T, Zhou WY, Zhuang Y, Peng LS, et al. (2012) Role of gamma-delta T cells in host response against Staphylococcus aureus-induced pneumonia. BMC Immunol 13: 38. doi: 10.1186/1471-2172-13-38 22776294

42. McLoughlin RM, Lee JC, Kasper DL, Tzianabos AO (2008) IFN-gamma regulated chemokine production determines the outcome of Staphylococcus aureus infection. J Immunol 181: 1323–1332. 18606687

43. Zhao YX, Nilsson IM, Tarkowski A (1998) The dual role of interferon-gamma in experimental Staphylococcus aureus septicaemia versus arthritis. Immunology 93: 80–85. 9536122

44. Zhao YX, Tarkowski A (1995) Impact of interferon-gamma receptor deficiency on experimental Staphylococcus aureus septicemia and arthritis. J Immunol 155: 5736–5742. 7499861

45. Spellberg B, Edwards JE Jr. (2001) Type 1/Type 2 immunity in infectious diseases. Clin Infect Dis 32: 76–102. 11118387

46. Kubica M, Guzik K, Koziel J, Zarebski M, Richter W, et al. (2008) A potential new pathway for Staphylococcus aureus dissemination: the silent survival of S. aureus phagocytosed by human monocyte-derived macrophages. PLoS One 3: e1409. doi: 10.1371/journal.pone.0001409 18183290

47. Thwaites GE, Gant V (2011) Are bloodstream leukocytes Trojan Horses for the metastasis of Staphylococcus aureus? Nat Rev Microbiol 9: 215–222. doi: 10.1038/nrmicro2508 21297670

48. Murphy K, Travers P, Walport M, Janeway C (2012) Janeway's immunobiology. New York: Garland Science.

49. Ross PJ, Sutton CE, Higgins S, Allen AC, Walsh K, et al. (2013) Relative contribution of Th1 and Th17 cells in adaptive immunity to Bordetella pertussis: towards the rational design of an improved acellular pertussis vaccine. PLoS Pathog 9: e1003264. doi: 10.1371/journal.ppat.1003264 23592988

50. Fowler Vg AKBMED, et al. (2013) Effect of an investigational vaccine for preventing staphylococcus aureus infections after cardiothoracic surgery: A randomized trial. JAMA 309: 1368–1378. doi: 10.1001/jama.2013.3010 23549582

51. Rose WE, Eickhoff JC, Shukla SK, Pantrangi M, Rooijakkers S, et al. (2012) Elevated serum interleukin-10 at time of hospital admission is predictive of mortality in patients with Staphylococcus aureus bacteremia. J Infect Dis 206: 1604–1611. doi: 10.1093/infdis/jis552 22966128

52. Josefsson E, Hartford O, O'Brien L, Patti JM, Foster T (2001) Protection against experimental Staphylococcus aureus arthritis by vaccination with clumping factor A, a novel virulence determinant. J Infect Dis 184: 1572–1580. 11740733

53. Stranger-Jones YK, Bae T, Schneewind O (2006) Vaccine assembly from surface proteins of Staphylococcus aureus. Proc Natl Acad Sci U S A 103: 16942–16947. 17075065

54. den Reijer PM, Lemmens-den Toom N, Kant S, Snijders SV, Boelens H, et al. (2013) Characterization of the humoral immune response during Staphylococcus aureus bacteremia and global gene expression by Staphylococcus aureus in human blood. PLoS One 8: e53391. doi: 10.1371/journal.pone.0053391 23308212

55. Schmidt CS, White CJ, Ibrahim AS, Filler SG, Fu Y, et al. (2012) NDV-3, a recombinant alum-adjuvanted vaccine for Candida and Staphylococcus aureus, is safe and immunogenic in healthy adults. Vaccine 30: 7594–7600. doi: 10.1016/j.vaccine.2012.10.038 23099329

56. Warmerdam PA, Vanderlick K, Vandervoort P, De Smedt H, Plaisance S, et al. (2002) Staphylokinase-specific cell-mediated immunity in humans. J Immunol 168: 155–161. 11751958

57. Lawrence PK, Rokbi B, Arnaud-Barbe N, Sutten EL, Norimine J, et al. (2012) CD4 T cell antigens from Staphylococcus aureus Newman strain identified following immunization with heat-killed bacteria. Clin Vaccine Immunol 19: 477–489. doi: 10.1128/CVI.05642-11 22323557

58. Mori A, Oleszycka E, Sharp FA, Coleman M, Ozasa Y, et al. (2012) The vaccine adjuvant alum inhibits IL-12 by promoting PI3 kinase signaling while chitosan does not inhibit IL-12 and enhances Th1 and Th17 responses. Eur J Immunol 42: 2709–2719. doi: 10.1002/eji.201242372 22777876

59. Kranzer K, Bauer M, Lipford GB, Heeg K, Wagner H, et al. (2000) CpG-oligodeoxynucleotides enhance T-cell receptor-triggered interferon-gamma production and up-regulation of CD69 via induction of antigen-presenting cell-derived interferon type I and interleukin-12. Immunology 99: 170–178. 10692033

60. Aamot HV, Blomfeldt A, Eskesen AN (2012) Genotyping of 353 Staphylococcus aureus bloodstream isolates collected between 2004 and 2009 at a Norwegian university hospital and potential associations with clinical parameters. J Clin Microbiol 50: 3111–3114. doi: 10.1128/JCM.01352-12 22785198

61. McCarthy AJ, Lindsay JA (2010) Genetic variation in Staphylococcus aureus surface and immune evasion genes is lineage associated: implications for vaccine design and host-pathogen interactions. BMC Microbiol 10: 173. doi: 10.1186/1471-2180-10-173 20550675

62. van Hal SJ, Jensen SO, Vaska VL, Espedido BA, Paterson DL, et al. (2012) Predictors of mortality in Staphylococcus aureus Bacteremia. Clin Microbiol Rev 25: 362–386. doi: 10.1128/CMR.05022-11 22491776

63. Greenberg JA, David MZ, Hall JB, Kress JP (2014) Immune Dysfunction Prior to Staphylococcus aureus Bacteremia Is a Determinant of Long-Term Mortality. PLoS One 9: e88197. doi: 10.1371/journal.pone.0088197 24505428

64. Lesens OMD, Methlin CMD, Hansmann YMD, Remy VMD, Martinot MMD, et al. (2003) Role of Comorbidity in Mortality Related to Staphylococcus aureus Bacteremia: A Prospective Study Using the Charlson Weighted Index of Comorbidity • Infection Control and Hospital Epidemiology 24: 890–896. 14700403

65. Finkelman FD, Katona IM, Mosmann TR, Coffman RL (1988) IFN-gamma regulates the isotypes of Ig secreted during in vivo humoral immune responses. J Immunol 140: 1022–1027. 3125247

66. O'Keeffe KM, Wilk MM, Leech JM, Murphy AG, Laabei M, et al. (2015) Manipulation of autophagy in phagocytes facilitates Staphylococcus aureus bloodstream infection. Infection and Immunity in press.

67. Silva MT (2011) Macrophage phagocytosis of neutrophils at inflammatory/infectious foci: a cooperative mechanism in the control of infection and infectious inflammation. J Leukoc Biol 89: 675–683. doi: 10.1189/jlb.0910536 21169518

68. Mehta A, Brewington R, Chatterji M, Zoubine M, Kinasewitz GT, et al. (2004) Infection-induced modulation of m1 and m2 phenotypes in circulating monocytes: role in immune monitoring and early prognosis of sepsis. Shock 22: 423–430. 15489634

69. Smith RP, Baltch AL, Ritz WJ, Michelsen PB, Bopp LH (2010) IFN-gamma enhances killing of methicillin-resistant Staphylococcus aureus by human monocytes more effectively than GM-CSF in the presence of daptomycin and other antibiotics. Cytokine 51: 274–277. doi: 10.1016/j.cyto.2010.06.004 20580568

70. Marciano BE, Wesley R, De Carlo ES, Anderson VL, Barnhart LA, et al. (2004) Long-term interferon-gamma therapy for patients with chronic granulomatous disease. Clin Infect Dis 39: 692–699. 15356785

71. Penaloza-MacMaster P, Barber DL, Wherry EJ, Provine NM, Teigler JE, et al. (2015) Vaccine-elicited CD4 T cells induce immunopathology after chronic LCMV infection. Science 347: 278–282. doi: 10.1126/science.aaa2148 25593185

72. Joshi A, Pancari G, Cope L, Bowman EP, Cua D, et al. (2012) Immunization with Staphylococcus aureus iron regulated surface determinant B (IsdB) confers protection via Th17/IL17 pathway in a murine sepsis model. Hum Vaccin Immunother 8: 336–346. doi: 10.4161/hv.18946 22327491

73. McNeely TB, Shah NA, Fridman A, Joshi A, Hartzel JS, et al. (2014) Mortality among recipients of the Merck V710 Staphylococcus aureus vaccine after postoperative S. aureus infections: an analysis of possible contributing host factors. Hum Vaccin Immunother 10: 3513–3516. doi: 10.4161/hv.34407 25483690

74. Tzianabos AO, Wang JY, Lee JC (2001) Structural rationale for the modulation of abscess formation by Staphylococcus aureus capsular polysaccharides. Proc Natl Acad Sci U S A 98: 9365–9370. 11470905

75. Horsburgh MJ, Aish JL, White IJ, Shaw L, Lithgow JK, et al. (2002) sigmaB modulates virulence determinant expression and stress resistance: characterization of a functional rsbU strain derived from Staphylococcus aureus 8325–4. J Bacteriol 184: 5457–5467. 12218034

76. Watts A, Ke D, Wang Q, Pillay A, Nicholson-Weller A, et al. (2005) Staphylococcus aureus strains that express serotype 5 or serotype 8 capsular polysaccharides differ in virulence. Infect Immun 73: 3502–3511. 15908379

77. Weisser SB, Brugger HK, Voglmaier NS, McLarren KW, van Rooijen N, et al. (2011) SHIP-deficient, alternatively activated macrophages protect mice during DSS-induced colitis. J Leukoc Biol 90: 483–492. doi: 10.1189/jlb.0311124 21685246

78. Sunderkotter C, Nikolic T, Dillon MJ, Van Rooijen N, Stehling M, et al. (2004) Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol 172: 4410–4417. 15034056

79. Rumble J, Segal BM (2014) In vitro polarization of T-helper cells. Methods Mol Biol 1193: 105–113. doi: 10.1007/978-1-4939-1212-4_11 25151001

80. Geoghegan JA, Ganesh VK, Smeds E, Liang X, Hook M, et al. (2010) Molecular characterization of the interaction of staphylococcal microbial surface components recognizing adhesive matrix molecules (MSCRAMM) ClfA and Fbl with fibrinogen. J Biol Chem 285: 6208–6216. doi: 10.1074/jbc.M109.062208 20007717

81. Quah BJ, Warren HS, Parish CR (2007) Monitoring lymphocyte proliferation in vitro and in vivo with the intracellular fluorescent dye carboxyfluorescein diacetate succinimidyl ester. Nat Protoc 2: 2049–2056. 17853860

82. Mannering SI, Morris JS, Jensen KP, Purcell AW, Honeyman MC, et al. (2003) A sensitive method for detecting proliferation of rare autoantigen-specific human T cells. Journal of Immunological Methods 283: 173–183. 14659909

83. Richardson MP, Ayliffe MJ, Helbert M, Davies EG (1998) A simple flow cytometry assay using dihydrorhodamine for the measurement of the neutrophil respiratory burst in whole blood: comparison with the quantitative nitrobluetetrazolium test. J Immunol Methods 219: 187–193. 9831400

84. O'Neill E, Pozzi C, Houston P, Humphreys H, Robinson DA, et al. (2008) A Novel Staphylococcus aureus Biofilm Phenotype Mediated by the Fibronectin-Binding Proteins, FnBPA and FnBPB. Journal of Bacteriology 190: 3835–3850. doi: 10.1128/JB.00167-08 18375547

85. McCormack N, Foster TJ, Geoghegan JA (2014) A short sequence within subdomain N1 of region A of the Staphylococcus aureus MSCRAMM clumping factor A is required for export and surface display. Microbiology 160: 659–670. doi: 10.1099/mic.0.074724-0 24464799

86. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079. doi: 10.1093/bioinformatics/btp352 19505943

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2015 Číslo 11
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#