Non-Human Primates Harbor Diverse Mammalian and Avian Astroviruses Including Those Associated with Human Infections
With the advances in next generation sequencing and pathogen discovery, astrovirus (AstV), leading cause of diarrhea in children, the elderly and immunocompromised people, detection in diverse animal hosts has increased. Yet, to date there has been no detection of AstVs associated with human infections in animals suggesting these strains are specific to humans. In these studies we demonstrate that non-human primates (NHP) harbor a wide variety of AstVs including those previously only detected in people. Further, we identified an NHP with an AstV that is a recombination between human and animal genotypes. Our studies provide important new evidence that human astroviruses can be detected in animals directly challenging the paradigm that AstV infection is species-specific.
Vyšlo v časopise:
Non-Human Primates Harbor Diverse Mammalian and Avian Astroviruses Including Those Associated with Human Infections. PLoS Pathog 11(11): e32767. doi:10.1371/journal.ppat.1005225
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1005225
Souhrn
With the advances in next generation sequencing and pathogen discovery, astrovirus (AstV), leading cause of diarrhea in children, the elderly and immunocompromised people, detection in diverse animal hosts has increased. Yet, to date there has been no detection of AstVs associated with human infections in animals suggesting these strains are specific to humans. In these studies we demonstrate that non-human primates (NHP) harbor a wide variety of AstVs including those previously only detected in people. Further, we identified an NHP with an AstV that is a recombination between human and animal genotypes. Our studies provide important new evidence that human astroviruses can be detected in animals directly challenging the paradigm that AstV infection is species-specific.
Zdroje
1. Matsui SM, Greenberg HB (1996) Astroviruses. In: Fields BN, David PMH, Knipe M, editors. Field's Virology. 3 ed. Philadelphia: Lippincott Williams and Wilkins. pp. 811–824.
2. Mendez E, Arias CF (2007) Astroviruses. In: Knipe DM, Howley PM, editors. Field's Virology. 5 ed. Philadelphia: Lippincott Williams and Wilkins. pp. 981–1000.
3. Guix S, Bosch A, Pinto RM (2013) Astrovirus Taxonomy. In: Schultz-Cherry S, editor. Astrovirus Research. New York: Springer Science + Business Media. pp. 97–118.
4. De Benedictis P, Schultz-Cherry S, Burnham A, Cattoli G (2011) Astrovirus infections in humans and animals—molecular biology, genetic diversity, and interspecies transmissions. Infect Genet Evol 11: 1529–1544. doi: 10.1016/j.meegid.2011.07.024 21843659
5. Mendenhall IH, Smith GJ, Vijaykrishna D (2015) Ecological Drivers of Virus Evolution: Astrovirus as a Case Study. J Virol 89: 6978–6981. doi: 10.1128/JVI.02971-14 25948751
6. Bosch A, Pintó RM, Guix S (2014) Human Astroviruses. Clinical Microbiology Reviews 27: 1048–1074. doi: 10.1128/CMR.00013-14 25278582
7. Jiang H, Holtz LR, Bauer I, Franz CJ, Zhao G, et al. (2013) Comparison of novel MLB-clade, VA-clade and classic human astroviruses highlights constrained evolution of the classic human astrovirus nonstructural genes. Virology 436: 8–14. doi: 10.1016/j.virol.2012.09.040 23084422
8. Cattoli G, Chu DKW, Peiris M (2013) Astrovirus infections in animal mammalian species. In: Schultz-Cherry S, editor. Astrovirus Research. New York: Springer Science+Business Media. pp. 135–149.
9. Pankovics P, Boros A, Kiss T, Delwart E, Reuter G (2015) Detection of a mammalian-like astrovirus in bird, European roller (Coracias garrulus). Infect Genet Evol 34: 114–121. doi: 10.1016/j.meegid.2015.06.020 26096774
10. Finkbeiner SR, Le BM, Holtz LR, Storch GA, Wang D (2009) Detection of newly described astrovirus MLB1 in stool samples from children. Emerg Infect Dis 15: 441–444. doi: 10.3201/eid1503.081213 19239759
11. Rivera R, Nollens HH, Venn-Watson S, Gulland FM, Wellehan JF Jr. (2010) Characterization of phylogenetically diverse astroviruses of marine mammals. J Gen Virol 91: 166–173. doi: 10.1099/vir.0.015222-0 19759240
12. Farkas T, Sestak K, Wei C, Jiang X (2008) Characterization of a Rhesus Monkey Calicivirus Representing a New Genus of Caliciviridae. Journal of Virology 82: 5408–5416. doi: 10.1128/JVI.00070-08 18385231
13. Oberste MS, Feeroz MM, Maher K, Nix WA, Engel GA, et al. (2013) Characterizing the picornavirus landscape among synanthropic nonhuman primates in Bangladesh, 2007 to 2008. J Virol 87: 558–571. doi: 10.1128/JVI.00837-12 23097448
14. Farkas T, Cross RW, Hargitt E, Lerche NW, Morrow AL, et al. (2010) Genetic Diversity and Histo-Blood Group Antigen Interactions of Rhesus Enteric Caliciviruses. Journal of Virology 84: 8617–8625. doi: 10.1128/JVI.00630-10 20554772
15. Kalter SS (1982) Enteric viruses of nonhuman primates. Vet Pathol Suppl 7: 33–43. 6293149
16. Jiang B, McClure HM, Fankhauser RL, Monroe SS, Glass RI (2004) Prevalence of rotavirus and norovirus antibodies in non-human primates. Journal of Medical Primatology 33: 30–33. 15061730
17. Feeroz MM, Soliven K, Small CT, Engel GA, Andreina Pacheco M, et al. (2013) Population dynamics of rhesus macaques and associated foamy virus in Bangladesh. Emerg Microbes Infect 2: e29. doi: 10.1038/emi.2013.23 26038465
18. Karlsson EA, Engel GA, Feeroz MM, San S, Rompis A, et al. (2012) Influenza virus infection in nonhuman primates. Emerg Infect Dis 18: 1672–1675. doi: 10.3201/eid1810.120214 23017256
19. Chu DKW, Poon LLM, Guan Y, Peris JSM (2008) Novel astroviruses in insectivorous bats. J Virol 82: 9107–9114. doi: 10.1128/JVI.00857-08 18550669
20. Finkbeiner SR, Kirkwood CD, Wang D (2008) Complete genome sequence of a highly divergent astrovirus isolated from a child with acute diarrhea. Virology Journal 5.
21. Finkbeiner SR, Li Y, Ruone S, Conrardy C, Gregoricus N, et al. (2009) Identification of a novel astrovirus (astrovirus VA1) associated with an outbreak of acute gastroenteritis. J Virol 83: 10836–10839. doi: 10.1128/JVI.00998-09 19706703
22. Meliopoulos VA, Kayali G, Burnham A, Oshansky CM, Thomas PG, et al. (2014) Detection of Antibodies against Turkey Astrovirus in Humans. PLoS ONE 9: e96934. doi: 10.1371/journal.pone.0096934 24826893
23. Holtz LR, Bauer IK, Jiang H, Belshe R, Freiden P, et al. (2014) Seroepidemiology of Astrovirus MLB1. Clinical and Vaccine Immunology 21: 908–911. doi: 10.1128/CVI.00100-14 24789796
24. Shan T, Li L, Simmonds P, Wang C, Moeser A, et al. (2011) The fecal virome of pigs on a high-density farm. J Virol 85: 11697–11708. doi: 10.1128/JVI.05217-11 21900163
25. Sun N, Yang Y, Wang G-S, Shao X-Q, Zhang S-Q, et al. (2014) Detection and Characterization of Avastrovirus Associated with Diarrhea Isolated from Minks in China. Food and Environmental Virology 6: 169–174. doi: 10.1007/s12560-014-9155-3 24915926
26. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25: 1972–1973. doi: 10.1093/bioinformatics/btp348 19505945
27. Bruen TC, Philippe H, Bryant D (2006) A simple and robust statistical test for detecting the presence of recombination. Genetics 172: 2665–2681. 16489234
28. Zhu HC, Chu DKW, Liu W, Dong BQ, Zhang SY, et al. (2009) Detection of diverse astroviruses from bats in China. Journal of General Virology 90: 883–887. doi: 10.1099/vir.0.007732-0 19264622
29. Xiao J, Li J, Hu G, Chen Z, Wu Y, et al. (2011) Isolation and phylogenetic characterization of bat astroviruses in southern China. Archives of Virology 156: 1415–1423. doi: 10.1007/s00705-011-1011-2 21573690
30. Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biological Conservation 61: 1–10.
31. Lozupone C, Knight R (2005) UniFrac: a New Phylogenetic Method for Comparing Microbial Communities. Applied and Environmental Microbiology 71: 8228–8235. 16332807
32. Simberloff D (1972) Properties of the rarefaction of diversity measurement. The American Naturalist 106: 414–418.
33. Oberste MS, Feeroz MM, Maher K, Nix WA, Engel GA, et al. (2013) Naturally acquired picornavirus infections in primates at the Dhaka zoo. J Virol 87: 572–580. doi: 10.1128/JVI.00838-12 23097447
34. Hasan MK, Feeroz MM, Jones-Engel L, Engel GA, Kanthaswamy S, et al. (2014) Diversity and molecular phylogeny of mitochondrial DNA of rhesus macaques (Macaca mulatta) in Bangladesh. Am J Primatol 76: 1094–1104. doi: 10.1002/ajp.22296 24810278
35. Ranwez V, Harispe S, Delsuc F, Douzery EJP (2011) MACSE: Multiple Alignment of Coding SEquences Accounting for Frameshifts and Stop Codons. PLoS ONE 6: e22594. doi: 10.1371/journal.pone.0022594 21949676
36. Matsen IV FA (2012) seqmagick.
37. Katoh K, Misawa K, Kuma Ki, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30: 3059–3066. 12136088
38. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, et al. (2010) New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Systematic Biology 59: 307–321. doi: 10.1093/sysbio/syq010 20525638
39. Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, et al. (2009) Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25: 1422–1423. doi: 10.1093/bioinformatics/btp163 19304878
40. R Core Team (2014) A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
41. Paradis E, Claude J, Strimmer K (2004) APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics 20: 289–290. 14734327
42. Junier T, Zdobnov EM (2010) The Newick utilities: high-throughput phylogenetic tree processing in the Unix shell. Bioinformatics 26: 1669–1670. doi: 10.1093/bioinformatics/btq243 20472542
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2015 Číslo 11
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
Najčítanejšie v tomto čísle
- Dengue Virus Non-structural Protein 1 Modulates Infectious Particle Production via Interaction with the Structural Proteins
- On the Discovery of TOR As the Target of Rapamycin
- Parasite Glycobiology: A Bittersweet Symphony
- Broadening of Virus-Specific CD8 T-Cell Responses Is Indicative of Residual Viral Replication in Aviremic SIV Controllers