#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Application of a New Method for GWAS in a Related Case/Control Sample with Known Pedigree Structure: Identification of New Loci for Nephrolithiasis


In contrast to large GWA studies based on thousands of individuals and large meta-analyses combining GWAS results, we analyzed a small case/control sample for uric acid nephrolithiasis. Our cohort of closely related individuals is derived from a small, genetically isolated village in Sardinia, with well-characterized genealogical data linking the extant population up to the 16th century. It is expected that the number of risk alleles involved in complex disorders is smaller in isolated founder populations than in more diverse populations, and the power to detect association with complex traits may be increased when related, homogeneous affected individuals are selected, as they are more likely to be enriched with and share specific risk variants than are unrelated, affected individuals from the general population. When related individuals are included in an association study, correlations among relatives must be accurately taken into account to ensure validity of the results. A recently proposed association method uses an empirical genotypic covariance matrix estimated from genome-screen data to allow for additional population structure and cryptic relatedness that may not be captured by the genealogical data. We apply the method to our data, and we also investigate the properties of the method, as well as other association methods, in our highly inbred population, as previous applications were to outbred samples. The more promising regions identified in our initial study in the genetic isolate were then further investigated in an independent sample collected from the Italian population. Among the loci that showed association in this study, we observed evidence of a possible involvement of the region encompassing the gene LRRC16A, already associated to serum uric acid levels in a large meta-analysis of 14 GWAS, suggesting that this locus might lead a pathway for uric acid metabolism that may be involved in gout as well as in nephrolithiasis.


Vyšlo v časopise: Application of a New Method for GWAS in a Related Case/Control Sample with Known Pedigree Structure: Identification of New Loci for Nephrolithiasis. PLoS Genet 7(1): e32767. doi:10.1371/journal.pgen.1001281
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001281

Souhrn

In contrast to large GWA studies based on thousands of individuals and large meta-analyses combining GWAS results, we analyzed a small case/control sample for uric acid nephrolithiasis. Our cohort of closely related individuals is derived from a small, genetically isolated village in Sardinia, with well-characterized genealogical data linking the extant population up to the 16th century. It is expected that the number of risk alleles involved in complex disorders is smaller in isolated founder populations than in more diverse populations, and the power to detect association with complex traits may be increased when related, homogeneous affected individuals are selected, as they are more likely to be enriched with and share specific risk variants than are unrelated, affected individuals from the general population. When related individuals are included in an association study, correlations among relatives must be accurately taken into account to ensure validity of the results. A recently proposed association method uses an empirical genotypic covariance matrix estimated from genome-screen data to allow for additional population structure and cryptic relatedness that may not be captured by the genealogical data. We apply the method to our data, and we also investigate the properties of the method, as well as other association methods, in our highly inbred population, as previous applications were to outbred samples. The more promising regions identified in our initial study in the genetic isolate were then further investigated in an independent sample collected from the Italian population. Among the loci that showed association in this study, we observed evidence of a possible involvement of the region encompassing the gene LRRC16A, already associated to serum uric acid levels in a large meta-analysis of 14 GWAS, suggesting that this locus might lead a pathway for uric acid metabolism that may be involved in gout as well as in nephrolithiasis.


Zdroje

1. RiversK

ShettyS

MenonM

2000 When and how to evaluate a patient with nephrolithiasis. Urol Clin North Am 27 203 213

2. StamatelouKK

FrancisME

JonesCA

NybergLM

CurhanGC

2003 Time trends in reported prevalence of kidney stones in the United States: 1976–1994. Kidney Int 63 1817 1823

3. SoucieJM

ThunMJ

CoatesRJ

McClellanW

AustinH

1994 Demographic and geographic variability of kidney stones in the United States. Kidney Int 46 893 899

4. PakCY

PoindexterJR

Adams-HuetB

PearleMS

2003 Predictive value of kidney stone composition in the detection of metabolic abnormalities. Am J Med 115 26 32

5. BidHK

ChaudharyH

MittalRD

2005 Association of vitamin-D and calcitonin receptor gene polymorphism in paediatric nephrolithiasis. Pediatr Nephrol 20 773 776

6. OnaranM

YilmazA

SenI

ErgunMA

CamtosunA

2009 A HindIII polymorphism of fibronectin gene is associated with nephrolithiasis. Urology 74 1004 1007

7. SayerJA

2008 The genetics of nephrolithiasis. Nephron Exp Nephrol 110 e37 43

8. BrikowskiTH

LotanY

PearleMS

2008 Climate-related increase in the prevalence of urolithiasis in the United States. Proc Natl Acad Sci U S A 105 9841 9846

9. Alvarez-NemegyeiJ

Medina-EscobedoM

Villanueva-JorgeS

Vazquez-MelladoJ

2005 Prevalence and risk factors for urolithiasis in primary gout: is a reappraisal needed? J Rheumatol 32 2189 2191

10. SakhaeeK

2008 Nephrolithiasis as a systemic disorder. Curr Opin Nephrol Hypertens 17 304 309

11. PakCY

SakhaeeK

PetersonRD

PoindexterJR

FrawleyWH

2001 Biochemical profile of idiopathic uric acid nephrolithiasis. Kidney Int 60 757 761

12. AngiusA

HylandFC

PersicoI

PirastuN

WoodageT

2008 Patterns of linkage disequilibrium between SNPs in a Sardinian population isolate and the selection of markers for association studies. Hum Hered 65 9 22

13. FraumeneC

BelleEM

CastriL

SannaS

MancosuG

2006 High resolution analysis and phylogenetic network construction using complete mtDNA sequences in sardinian genetic isolates. Mol Biol Evol 23 2101 2111

14. OmbraMN

ForaboscoP

CasulaS

AngiusA

MaestraleG

2001 Identification of a new candidate locus for uric acid nephrolithiasis. Am J Hum Genet 68 1119 1129

15. GianfrancescoF

EspositoT

OmbraMN

ForaboscoP

ManincheddaG

2003 Identification of a novel gene and a common variant associated with uric acid nephrolithiasis in a Sardinian genetic isolate. Am J Hum Genet 72 1479 1491

16. BourgainC

HoffjanS

NicolaeR

NewmanD

SteinerL

2003 Novel case-control test in a founder population identifies P-selectin as an atopy-susceptibility locus. Am J Hum Genet 73 612 626

17. SlagerSL

SchaidDJ

2001 Evaluation of candidate genes in case-control studies: a statistical method to account for related subjects. Am J Hum Genet 68 1457 1462

18. ThorntonT

McPeekMS

2007 Case-control association testing with related individuals: a more powerful quasi-likelihood score test. Am J Hum Genet 81 321 337

19. Lasky-SuJ

WonS

MickE

AnneyRJ

FrankeB

2010 On genome-wide association studies for family-based designs: an integrative analysis approach combining ascertained family samples with unselected controls. Am J Hum Genet 86 573 580

20. ThorntonT

McPeekMS

2010 ROADTRIPS: case-control association testing with partially or completely unknown population and pedigree structure. Am J Hum Genet 86 172 184

21. PriceAL

ZaitlenNA

ReichD

PattersonN

2010 New approaches to population stratification in genome-wide association studies. Nat Rev Genet 11 459 463

22. PollackHM

ArgerPH

GoldbergBB

MulhollandSG

1978 Ultrasonic detection of nonopaque renal calculi. Radiology 127 233 237

23. PurcellS

NealeB

Todd-BrownK

ThomasL

FerreiraMA

2007 PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81 559 575

24. DevlinB

RoederK

1999 Genomic control for association studies. Biometrics 55 997 1004

25. McPeekMS

WuX

OberC

2004 Best linear unbiased allele-frequency estimation in complex pedigrees. Biometrics 60 359 367

26. de BakkerPI

YelenskyR

Pe'erI

GabrielSB

DalyMJ

2005 Efficiency and power in genetic association studies. Nat Genet 37 1217 1223

27. FalchiM

ForaboscoP

MocciE

BorlinoCC

PicciauA

2004 A genomewide search using an original pairwise sampling approach for large genealogies identifies a new locus for total and low-density lipoprotein cholesterol in two genetically differentiated isolates of Sardinia. Am J Hum Genet 75 1015 1031

28. BrowningSR

BrileyJD

BrileyLP

ChandraG

CharneckiJH

2005 Case-control single-marker and haplotypic association analysis of pedigree data. Genet Epidemiol 28 110 122

29. KolzM

JohnsonT

SannaS

TeumerA

VitartV

2009 Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet 5 e1000504 doi:10.1371/journal.pgen.1000504

30. YangC

PringM

WearMA

HuangM

CooperJA

2005 Mammalian CARMIL inhibits actin filament capping by capping protein. Dev Cell 9 209 221

31. FaulC

AsanumaK

Yanagida-AsanumaE

KimK

MundelP

2007 Actin up: regulation of podocyte structure and function by components of the actin cytoskeleton. Trends Cell Biol 17 428 437

32. CowardRJ

WelshGI

YangJ

TasmanC

LennonR

2005 The human glomerular podocyte is a novel target for insulin action. Diabetes 54 3095 3102

33. AbateN

ChandaliaM

Cabo-ChanAVJr

MoeOW

SakhaeeK

2004 The metabolic syndrome and uric acid nephrolithiasis: novel features of renal manifestation of insulin resistance. Kidney Int 65 386 392

34. WildS

RoglicG

GreenA

SicreeR

KingH

2004 Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27 1047 1053

35. DeitelM

2003 Overweight and obesity worldwide now estimated to involve 1.7 billion people. Obes Surg 13 329 330

36. TaylorEN

StampferMJ

CurhanGC

2005 Obesity, weight gain, and the risk of kidney stones. Jama 293 455 462

37. TaylorEN

StampferMJ

CurhanGC

2005 Diabetes mellitus and the risk of nephrolithiasis. Kidney Int 68 1230 1235

38. PrimakoffP

MylesDG

2000 The ADAM gene family: surface proteins with adhesion and protease activity. Trends Genet 16 83 87

39. RuQC

KatenhusenRA

ZhuLA

SilbermanJ

YangS

2006 Proteomic profiling of human urine using multi-dimensional protein identification technology. J Chromatogr A 1111 166 174

40. WhiteJM

2003 ADAMs: modulators of cell-cell and cell-matrix interactions. Curr Opin Cell Biol 15 598 606

41. ThodetiCK

AlbrechtsenR

GrauslundM

AsmarM

LarssonC

2003 ADAM12/syndecan-4 signaling promotes beta 1 integrin-dependent cell spreading through protein kinase Calpha and RhoA. J Biol Chem 278 9576 9584

42. OmbraMN

CasulaS

BiinoG

MaestraleG

CardiaF

2003 Urinary glycosaminoglycans as risk factors for uric acid nephrolithiasis: case control study in a Sardinian genetic isolate. Urology 62 416 420

43. IshiguroK

KadomatsuK

KojimaT

MuramatsuH

MatsuoS

2001 Syndecan-4 deficiency increases susceptibility to kappa-carrageenan-induced renal damage. Lab Invest 81 509 516

44. HwangSJ

YangQ

MeigsJB

PearceEN

FoxCS

2007 A genome-wide association for kidney function and endocrine-related traits in the NHLBI's Framingham Heart Study. BMC Med Genet 8 Suppl 1 S10

45. JohnsonAD

HandsakerRE

PulitSL

NizzariMM

O'DonnellCJ

2008 SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics 24 2938 2939

46. BarrettJC

FryB

MallerJ

DalyMJ

2005 Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21 263 265

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2011 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#