#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Transposon-Like Correia Elements Encode Numerous Strong Promoters and Provide a Potential New Mechanism for Phase Variation in the Meningococcus


Neisseria meningitidis is the primary causative agent of bacterial meningitis. The genome is rich in repetitive DNA and almost 2% is occupied by a diminutive transposon called the Correia element. Here we report a bioinformatic analysis defining eight subtypes of the element with four distinct types of ends. Transcriptional analysis, using PCR and a lacZ reporter system, revealed that two ends in particular encode strong promoters. The activity of the strongest promoter is dictated by a recurrent polymorphism (Y128) at the right end of the element. We highlight examples of elements that appear to drive transcription of adjacent genes and others that may express small non-coding RNAs. Pair-wise comparisons between three meningococcal genomes revealed that no more than two-thirds of Correia elements maintain their subtype at any particular locus. This is due to recombinational class switching between elements in a single strain. Upon switching subtype, a new allele is available to spread through the population by natural transformation. This process may represent a hitherto unrecognized mechanism for phase variation in the meningococcus. We conclude that the strain-to-strain variability of the Correia elements, and the large number of strong promoters encoded by them, allows for potentially widespread effects within the population as a whole. By defining the strength of the promoters encoded by the eight subtypes of Correia ends, we provide a resource that allows the transcriptional effects of a particular subtype at a given locus to be predicted.


Vyšlo v časopise: The Transposon-Like Correia Elements Encode Numerous Strong Promoters and Provide a Potential New Mechanism for Phase Variation in the Meningococcus. PLoS Genet 7(1): e32767. doi:10.1371/journal.pgen.1001277
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001277

Souhrn

Neisseria meningitidis is the primary causative agent of bacterial meningitis. The genome is rich in repetitive DNA and almost 2% is occupied by a diminutive transposon called the Correia element. Here we report a bioinformatic analysis defining eight subtypes of the element with four distinct types of ends. Transcriptional analysis, using PCR and a lacZ reporter system, revealed that two ends in particular encode strong promoters. The activity of the strongest promoter is dictated by a recurrent polymorphism (Y128) at the right end of the element. We highlight examples of elements that appear to drive transcription of adjacent genes and others that may express small non-coding RNAs. Pair-wise comparisons between three meningococcal genomes revealed that no more than two-thirds of Correia elements maintain their subtype at any particular locus. This is due to recombinational class switching between elements in a single strain. Upon switching subtype, a new allele is available to spread through the population by natural transformation. This process may represent a hitherto unrecognized mechanism for phase variation in the meningococcus. We conclude that the strain-to-strain variability of the Correia elements, and the large number of strong promoters encoded by them, allows for potentially widespread effects within the population as a whole. By defining the strength of the promoters encoded by the eight subtypes of Correia ends, we provide a resource that allows the transcriptional effects of a particular subtype at a given locus to be predicted.


Zdroje

1. HarrisonLH

TrotterCL

RamsayME

2009 Global epidemiology of meningococcal disease. Vaccine 27 Suppl 2 B51 63

2. SultanB

LabadiK

GueganJF

JanicotS

2005 Climate drives the meningitis epidemics onset in west Africa. PLoS Med 2 e6 doi:10.1371/journal.pmed.0030006

3. BentleySD

VernikosGS

SnyderLA

ChurcherC

ArrowsmithC

2007 Meningococcal genetic variation mechanisms viewed through comparative analysis of serogroup C strain FAM18. PLoS Genet 3 e23 doi:10.1371/journal.pgen.0030023

4. DavidsenT

TonjumT

2006 Meningococcal genome dynamics. Nat Rev Microbiol 4 11 22

5. ParkhillJ

AchtmanM

JamesKD

BentleySD

ChurcherC

2000 Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature 404 502 506

6. TettelinH

SaundersNJ

HeidelbergJ

JeffriesAC

NelsonKE

2000 Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 287 1809 1815

7. CorreiaFF

InouyeS

InouyeM

1986 A 26-base-pair repetitive sequence specific for Neisseria gonorrhoeae and Neisseria meningitidis genomic DNA. J Bacteriol 167 1009 1015

8. CorreiaFF

InouyeS

InouyeM

1988 A family of small repeated elements with some transposon-like properties in the genome of Neisseria gonorrhoeae. J Biol Chem 263 12194 12198

9. BuisineN

TangCM

ChalmersR

2002 Transposon-like Correia elements: structure, distribution and genetic exchange between pathogenic Neisseria sp. FEBS Lett 522 52 58

10. Claeys BouuaertC

ChalmersRM

2010 Gene therapy vectors: the prospects and potentials of the cut-and-paste transposons. Genetica 138 473 484

11. Claeys BouuaertC

ChalmersR

2010 Transposition of the human Hsmar1 transposon: rate-limiting steps and the importance of the flanking TA dinucleotide in second strand cleavage. Nucleic Acids Res 38 190 202

12. Munoz-LopezM

SiddiqueA

BischerourJ

LoriteP

ChalmersR

PalomequeT

2008 Transposition of Mboumar-9: identification of a new naturally active mariner-family transposon. J Mol Biol 382 567 572

13. LiuD

BischerourJ

SiddiqueA

BuisineN

BigotY

ChalmersR

2007 The human SETMAR protein preserves most of the activities of the ancestral Hsmar1 transposase. Mol Cell Biol 27 1125 1132

14. AzizRK

BreitbartM

EdwardsRA

2010 Transposases are the most abundant, most ubiquitous genes in nature. Nucleic Acids Res 38 4207 4217

15. ChalmersR

BlotM

1999 Insertion Sequences and Transposons.

CharleboisRL

Organization of the Prokaryotic Genome Washington, D.C. American Society for Microbiology 151 169

16. SchmidtJM

GoodRT

AppletonB

SherrardJ

RaymantGC

2010 Copy number variation and transposable elements feature in recent, ongoing adaptation at the Cyp6g1 locus. PLoS Genet 6 e1000998 doi:10.1371/journal.pgen.1000998

17. MahillonJ

ChandlerM

1998 Insertion sequences. Microbiol Mol Biol Rev 62 725 774

18. SimonsRW

HoopesBC

McClureWR

KlecknerN

1983 Three promoters near the termini of IS10 - pIN, pOUT, and pIII. Cell 34 673 682

19. GlansdorffN

CharlierD

ZafarullahM

1981 Activation of gene expression by IS2 and IS3. Cold Spring Harb Symp Quant Biol 45 Pt 1 153 156

20. HintonDM

MussoRE

1982 Transcription initiation sites within an IS2 insertion in a Gal-constitutive mutant of Escherichia coli. Nucleic Acids Res 10 5015 5031

21. PrentkiP

TeterB

ChandlerM

GalasDJ

1986 Functional promoters created by the insertion of transposable element IS1. J Mol Biol 191 383 393

22. LiuSV

SaundersNJ

JeffriesA

RestRF

2002 Genome analysis and strain comparison of Correia repeats and Correia repeat-enclosed elements in pathogenic Neisseria. J Bacteriol 184 6163 6173

23. De GregorioE

AbresciaC

CarlomagnoMS

Di NoceraPP

2002 The abundant class of nemis repeats provides RNA substrates for ribonuclease III in Neisseriae. Biochim Biophys Acta 1576 39 44

24. De GregorioE

AbresciaC

CarlomagnoMS

Di NoceraPP

2003 Ribonuclease III-mediated processing of specific Neisseria meningitidis mRNAs. Biochem J 374 799 805

25. MazzoneM

De GregorioE

LavitolaA

PagliaruloC

AlifanoP

Di NoceraPP

2001 Whole-genome organization and functional properties of miniature DNA insertion sequences conserved in pathogenic Neisseriae. Gene 278 211 222

26. FrancisF

Ramirez-ArcosS

SalimniaH

VictorC

DillonJR

2000 Organization and transcription of the division cell wall (dcw) cluster in Neisseria gonorrhoeae. Gene 251 141 151

27. BlackCG

FyfeJA

DaviesJK

1995 A promoter associated with the neisserial repeat can be used to transcribe the uvrB gene from Neisseria gonorrhoeae. J Bacteriol 177 1952 1958

28. PackiamM

ShellDM

LiuSV

LiuYB

McGeeDJ

2006 Differential expression and transcriptional analysis of the alpha-2,3-sialyltransferase gene in pathogenic Neisseria spp. Infect Immun 74 2637 2650

29. ZhaoS

MontanezGE

KumarP

SannigrahiS

TzengYL

2010 Regulatory role of the MisR/S two-component system in hemoglobin utilization in Neisseria meningitidis. Infect Immun 78 1109 1122

30. KumarA

MallochRA

FujitaN

SmillieDA

IshihamaA

HaywardRS

1993 The minus 35-recognition region of Escherichia coli sigma 70 is inessential for initiation of transcription at an “extended minus 10” promoter. J Mol Biol 232 406 418

31. SwartleyJS

AhnJH

LiuLJ

KahlerCM

StephensDS

1996 Expression of sialic acid and polysialic acid in serogroup B Neisseria meningitidis: divergent transcription of biosynthesis and transport operons through a common promoter region. J Bacteriol 178 4052 4059

32. PonnambalamS

WebsterC

BinghamA

BusbyS

1986 Transcription initiation at the Escherichia coli galactose operon promoters in the absence of the normal −35 region sequences. J Biol Chem 261 16043 16048

33. AzamTA

IwataA

NishimuraA

UedaS

IshihamaA

1999 Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid. J Bacteriol 181 6361 6370

34. DittoMD

RobertsD

WeisbergRA

1994 Growth phase variation of integration host factor level in Escherichia coli. J Bacteriol 176 3738 3748

35. KingsfordCL

AyanbuleK

SalzbergSL

2007 Rapid, accurate computational discovery of rho-independent transcription terminators illuminates their relationship to DNA uptake. Genome Biol 8 R22

36. GottesmanS

2002 Stealth regulation: biological circuits with small RNA switches. Genes Dev 16 2829 2842

37. GottesmanS

2004 The small RNA regulators of Escherichia coli: roles and mechanisms*. Annu Rev Microbiol 58 303 328

38. ArgamanL

HershbergR

VogelJ

BejeranoG

WagnerEGH

MargalitH

AltuviaS

2001 Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. Curr Biol 11 941 950

39. ChenS

LesnikEA

HallTA

SampathR

GriffeyRH

EckerDJ

BlynLB

2002 A bioinformatics based approach to discover small RNA genes in the Escherichia coli genome. BioSystems 65 157 177

40. VogelJ

SharmaCM

2005 How to find small non-coding RNAs in bacteria. Biol Chem 386 1219 1238

41. EnriquezR

AbadR

ChantoG

CorsoA

CrucesR

2010 Deletion of the Correia element in the mtr gene complex of Neisseria meningitidis. J Med Microbiol 59 1055 1060

42. SnyderLA

ShaferWM

SaundersNJ

2003 Divergence and transcriptional analysis of the division cell wall (dcw) gene cluster in Neisseria spp. Mol Microbiol 47 431 442

43. SwingerKK

RicePA

2004 IHF and HU: flexible architects of bent DNA. Curr Opin Struct Biol 14 28 35

44. DormanCJ

2009 Nucleoid-associated proteins and bacterial physiology. Adv Appl Microbiol 67 47 64

45. Rouquette-LoughlinCE

BalthazarJT

HillSA

ShaferWM

2004 Modulation of the mtrCDE-encoded efflux pump gene complex of Neisseria meningitidis due to a Correia element insertion sequence. Mol Microbiol 54 731 741

46. ShaJ

KozlovaEV

FadlAA

OlanoJP

HoustonCW

PetersonJW

ChopraAK

2004 Molecular characterization of a glucose-inhibited division gene, gidA, that regulates cytotoxic enterotoxin of Aeromonas hydrophila. Infect Immun 72 1084 1095

47. ChoKH

CaparonMG

2008 tRNA modification by GidA/MnmE is necessary for Streptococcus pyogenes virulence: a new strategy to make live attenuated strains. Infect Immun 76 3176 3186

48. CarpousisAJ

2003 Degradation of targeted mRNAs in Escherichia coli: regulation by a small antisense RNA. Genes Dev 17 2351 2355

49. HandNJ

SilhavyTJ

2000 A practical guide to the construction and use of lac fusions in Escherichia coli. Methods Enzymol 326 11 35

50. MillerJH

1972 Experiments in Molecular genetics Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

51. SawayaR

ArhinFF

MoreauF

CoultonJW

MillsEL

1999 Mutational analysis of the promoter region of the porA gene of Neisseria meningitidis. Gene 233 49 57

52. SimonsRW

HoumanF

KlecknerN

1987 Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene 53 85 96

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2011 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#