#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Joint Genetic Analysis of Gene Expression Data with Inferred Cellular Phenotypes


Even within a defined cell type, the expression level of a gene differs in individual samples. The effects of genotype, measured factors such as environmental conditions, and their interactions have been explored in recent studies. Methods have also been developed to identify unmeasured intermediate factors that coherently influence transcript levels of multiple genes. Here, we show how to bring these two approaches together and analyse genetic effects in the context of inferred determinants of gene expression. We use a sparse factor analysis model to infer hidden factors, which we treat as intermediate cellular phenotypes that in turn affect gene expression in a yeast dataset. We find that the inferred phenotypes are associated with locus genotypes and environmental conditions and can explain genetic associations to genes in trans. For the first time, we consider and find interactions between genotype and intermediate phenotypes inferred from gene expression levels, complementing and extending established results.


Vyšlo v časopise: Joint Genetic Analysis of Gene Expression Data with Inferred Cellular Phenotypes. PLoS Genet 7(1): e32767. doi:10.1371/journal.pgen.1001276
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001276

Souhrn

Even within a defined cell type, the expression level of a gene differs in individual samples. The effects of genotype, measured factors such as environmental conditions, and their interactions have been explored in recent studies. Methods have also been developed to identify unmeasured intermediate factors that coherently influence transcript levels of multiple genes. Here, we show how to bring these two approaches together and analyse genetic effects in the context of inferred determinants of gene expression. We use a sparse factor analysis model to infer hidden factors, which we treat as intermediate cellular phenotypes that in turn affect gene expression in a yeast dataset. We find that the inferred phenotypes are associated with locus genotypes and environmental conditions and can explain genetic associations to genes in trans. For the first time, we consider and find interactions between genotype and intermediate phenotypes inferred from gene expression levels, complementing and extending established results.


Zdroje

1. HirschhornJN

DalyMJ

2005 Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 6 95 108

2. MackayTFC

StoneEA

AyrolesJF

2009 The genetics of quantitative traits: challenges and prospects. Nat Rev Genet 10 565 577

3. MontgomerySB

DermitzakisET

2009 The resolution of the genetics of gene expression. Hum Mol Genet 18 R211 215

4. BremRB

YvertG

ClintonR

KruglyakL

2002 Genetic dissection of transcriptional regulation in budding yeast. Science 296 752 755

5. MorleyM

MolonyCM

WeberTM

DevlinJL

EwensKG

2004 Genetic analysis of genome-wide variation in human gene expression. Nature 430 743 747

6. StrangerB

ForrestM

ClarkA

MinichielloM

DeutschS

2005 Genome-wide associations of gene expression variation in humans. PLoS Genet 1 e78 doi:10.1371/journal.pgen.0010078

7. StrangerBEE

NicaACC

ForrestMSS

DimasA

BirdCPP

2007 Population genomics of human gene expression. Nature Genetics 39 1217 1224

8. BremR

KruglyakL

2005 The landscape of genetic complexity across 5,700 gene expression traits in yeast. Proc Natl Acad Sci USA 102 1572

9. YvertG

BremRB

WhittleJ

AkeyJM

FossE

2003 Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors. Nature Genetics 35 57 64

10. StegleO

PartsL

DurbinR

WinnJ

2010 A Bayesian framework to account for complex non-genetic factors in gene expression levels greatly increases power in eQTL studies. PLoS Comput Biol 6 e1000770 doi:10.1371/journal.pcbi.1000770

11. GibsonG

2008 The environmental contribution to gene expression profiles. Nat Rev Genet 9 575 582

12. StoreyJD

AkeyJM

KruglyakL

2005 Multiple locus linkage analysis of genomewide expression in yeast. PLoS Biol 3 e267 doi:10.1371/journal.pbio.0030267

13. ZouW

ZengZ

2009 Multiple interval mapping for gene expression QTL analysis. Genetica 137 125 134

14. CostanzoM

BaryshnikovaA

BellayJ

KimY

SpearED

2010 The genetic landscape of a cell. Science 327 425

15. SmithEN

KruglyakL

2008 Gene-environment interaction in yeast gene expression. PLoS Biol 6 e83 10.1371/journal.pbio.0060083

16. ChenY

ZhuJ

LumPY

YangX

Pi ntoS

2008 Variations in DNA elucidate molecular networks that cause disease. Nature 452 429

17. SchadtEE

LambJ

YangX

ZhuJ

EdwardsS

2005 An integrative genomics approach to infer causal associations between ge ne expression and disease. Nature Genetics 37 710 7

18. LumPY

CastelliniLW

WangS

PintoS

LambJ

2008 Variations in DNA elucidate molecular networks that cause disease. Nature 452 429 35

19. AlterO

BrownPO

BotsteinD

2000 Singular value decomposition for genome-wide expression data processing and modeling. Proc Natl Acad Sci USA 97 10101 10106

20. LiaoJC

BoscoloR

YangY

TranLM

SabattiC

2003 Network component analysis: Reconstruction of regulatory signals in biological systems. Proc Natl Acad Sci USA 100 15522 15527

21. LeekJ

StoreyJ

2007 Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet 3 e161 doi:10.1371/journal.pgen.0030161

22. BiswasS

StoreyJ

AkeyJ

2008 Mapping gene expression quantitative trait loci by singular value decomposition and independent component analysis. BMC Bioinformatics 9 244

23. StegleO

KannanA

DurbinR

WinnJ

2008 Accounting for non-genetic factors improves the power of eQTL studies. Proceedings of the 12th annual international conference on Research in computational molecular biology Springer-Verlag 411 422

24. StegleO

SharpK

WinnJ

RattrayM

2010 A comparison of inference in sparse factor analysis models. Technical report

25. RattrayM

StegleO

SharpK

WinnJ

2009 Inference algorithms and learning theory for Bayesian sparse factor analysis. Journal of Physics: Conference Series 197 012002

26. TeixeiraMC

MonteiroP

JainP

TenreiroS

FernandesAR

2006 The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae. Nucleic Acids Research 34 D3 D5

27. KanehisaM

GotoS

KawashimaS

NakayaA

2002 The KEGG databases at GenomeNet. Nucleic Acids Research 30 42

28. StoreyJ

TibshiraniR

2003 Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100 9440

29. WykoffD

RizviA

RaserJ

MargolinB

O'SheaE

2007 Positive feedback regulates switching of phosphate transporters in S. cerevisiae. Molecular Cell 27 1005 1013

30. 2009 Saccharomyces Genome Database. World Wide Web electronic publication. URL http://www.yeastgenome.org/

31. McCordR

PierceM

XieJ

WonkatalS

MickelS

2003 Rfm1, a novel tethering factor required to recruit the Hst1 histone deacetylase for repression of middle sporulation genes. Molecular and Cellular Biology 23 2009 2016

32. SmithJ

RamseyS

MarelliM

MarzolfB

HwangD

2007 Transcriptional responses to fatty acid are coordinated by combinatorial control. Molecular Systems Biology 3

33. LeeS

DudleyA

DrubinD

SilverP

KroganN

2009 Learning a prior on regulatory potential from eQTL data. PLoS Genet 5 e1000358 doi:10.1371/journal.pgen.1000358

34. PerlsteinEO

RuderferDM

RobertsDC

SchreiberSL

KruglyakL

2007 Genetic basis of individual differences in the response to small-molecule drugs in yeast. Nature Genetics 39 496 502

35. GygiS

RochonY

FranzaB

AebersoldR

1999 Correlation between protein and mRNA abundance in yeast. Molecular and Cellular Biology 19 1720

36. FossEJ

RadulovicD

ShafferSA

RuderferDM

BedalovA

2007 Genetic basis of proteome variation in yeast. Nature Genetics 39 1369 1375

37. KomeiliA

O'SheaE

1999 Roles of phosphorylation sites in regulating activity of the transcription factor Pho4. Science 284 977

38. O'ConalláinC

DoolinM

TaggartC

ThorntonF

ButlerG

1999 Regulated nuclear localisation of the yeast transcription factor Ace2p controls expression of chitinase (CTS1) in Saccharomyces cerevisiae. Molecular and General Genetics MGG 262 275 282

39. GoernerW

DurchschlagE

Martinez-PastorM

EstruchF

AmmererG

1998 Nuclear localization of the C2H2 zinc finger protein MSN2P is regulated by stress and protein kinase A activity. Genes and Development 12 586

40. CordellHJ

2009 Detecting gene-gene interactions that underlie human diseases. Nat Rev Genet 10 392 404

41. ZhuJ

ZhangB

SmithEN

DreesB

BremRB

2008 Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nature Genetics 40 854 861

42. AtenJ

FullerT

LusisA

HorvathS

2008 Using genetic markers to orient the edges in quantitative trait networks: the NEO software. BMC Systems Biology 2 34

43. Chaibub NetoE

KellerM

AttieA

YandellB

2010 Causal graphical models in systems genetics: A unified framework for joint inference of causal network and genetic architecture for correlated phenotypes. The Annals of Applied Statistics 4 320 339

44. ZhangW

ZhuJ

SchadtEE

LiuJS

2010 A Bayesian partition method for detecting pleiotropic and epistatic eQTL modules. PLoS Comput Biol 6 e1000642 doi:10.1371/journal.pcbi.1000642

45. SunW

YuT

LiK

2007 Detection of eQTL modules mediated by activity levels of transcription factors. Bioinformatics 23 2290

46. Martin-MagnietteML

AubertJ

CabannesE

DaudinJJ

2005 Evaluation of the gene-specific dye bias in cdna microarray experiments. Bioinformatics 21 1995 2000

47. JordanM

GhahramaniZ

JaakkolaT

SaulL

1999 An introduction to variational methods for graphical models. Machine Learning 37 183 233

48. MinkaTP

2001 Expectation propagation for approximate Bayesian inference. Uncertainty in Artificial Intelligence 362 369 volume 17

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2011 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#