Friedreich's Ataxia (GAA)•(TTC) Repeats Strongly Stimulate Mitotic Crossovers in
Expansions of trinucleotide GAA•TTC tracts are associated with the human disease Friedreich's ataxia, and long GAA•TTC tracts elevate genome instability in yeast. We show that tracts of (GAA)230•(TTC)230 stimulate mitotic crossovers in yeast about 10,000-fold relative to a “normal” DNA sequence; (GAA)n•(TTC)n tracts, however, do not significantly elevate meiotic recombination. Most of the mitotic crossovers are associated with a region of non-reciprocal transfer of information (gene conversion). The major class of recombination events stimulated by (GAA)n•(TTC)n tracts is a tract-associated double-strand break (DSB) that occurs in unreplicated chromosomes, likely in G1 of the cell cycle. These findings indicate that (GAA)n•(TTC)n tracts can be a potent source of loss of heterozygosity in yeast.
Vyšlo v časopise:
Friedreich's Ataxia (GAA)•(TTC) Repeats Strongly Stimulate Mitotic Crossovers in. PLoS Genet 7(1): e32767. doi:10.1371/journal.pgen.1001270
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1001270
Souhrn
Expansions of trinucleotide GAA•TTC tracts are associated with the human disease Friedreich's ataxia, and long GAA•TTC tracts elevate genome instability in yeast. We show that tracts of (GAA)230•(TTC)230 stimulate mitotic crossovers in yeast about 10,000-fold relative to a “normal” DNA sequence; (GAA)n•(TTC)n tracts, however, do not significantly elevate meiotic recombination. Most of the mitotic crossovers are associated with a region of non-reciprocal transfer of information (gene conversion). The major class of recombination events stimulated by (GAA)n•(TTC)n tracts is a tract-associated double-strand break (DSB) that occurs in unreplicated chromosomes, likely in G1 of the cell cycle. These findings indicate that (GAA)n•(TTC)n tracts can be a potent source of loss of heterozygosity in yeast.
Zdroje
1. MirkinSM
2007
Expandable DNA repeats and human disease.
Nature
447
932
940
2. KovtunIV
McMurrayCT
2008
Features of trinucleotide repeat instability in vivo.
Cell Res
18
198
213
3. CampuzanoV
MonterminiL
MoltoMD
PianeseL
CosseeM
1996
Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion.
Science
271
1423
1427
4. KrasilnikovaMM
MirkinSM
2004
Replication stalling at Friedreich's ataxia (GAA)n repeats in vivo.
Mol Cell Biol
24
2286
2295
5. KimHM
NarayananV
MieczkowskiPA
PetesTD
KrasilnikovaMM
2008
Chromosome fragility at GAA tracts in yeast depends on repeat orientation and requires mismatch repair.
Embo J
27
2896
2906
6. ShishkinAA
VoineaguI
MateraR
CherngN
ChernetBT
2009
Large-scale expansions of Friedreich's ataxia GAA repeats in yeast.
Mol Cell
35
82
92
7. NapieralaM
DereR
VetcherA
WellsRD
2004
Structure-dependent recombination hot spot activity of GAA.TTC sequences from intron 1 of the Friedreich's ataxia gene.
J Biol Chem
279
6444
6454
8. DitchS
SammarcoMC
BanerjeeA
GrabczykE
2009
Progressive GAA.TTC repeat expansion in human cell lines.
PLoS Genet
5
e1000704
doi:10.1371/journal.pgen.1000704
9. WangG
VasquezKM
2009
Models for chromosomal replication-independent non-B DNA structure-induced genetic instability.
Mol Carcinog
48
286
298
10. LinY
DentSY
WilsonJH
WellsRD
NapieralaM
2010
R loops stimulate genetic instability of CTG.CAG repeats.
Proc Natl Acad Sci U S A
107
692
697
11. PetesTD
MaloneRE
SymingtonLS
1991
Recombination in yeast.
BroachJR
JonesEW
PringleJR
The Molecular and Cellular Biology of the Yeast Saccharomyces
Cold Spring Harbor
Cold Spring Harbor Press
407
521
12. PaquesF
HaberJE
1999
Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae.
Microbiol Mol Biol Rev
63
349
404
13. HunterN
2007
Meiotic recombination.
AguileraAA
RothsteinR
Molecular Genetics of Recombination
Berlin, Heidelberg, and New York
Springer
381
442
14. ManceraE
BourgonR
BrozziA
HuberW
SteinmetzLM
2008
High-resolution mapping of meiotic crossovers and non-crossovers in yeast.
Nature
454
479
485
15. LeePS
GreenwellPW
DominskaM
GawelM
HamiltonM
2009
A fine-structure map of spontaneous mitotic crossovers in the yeast Saccharomyces cerevisiae.
PLoS Genet
5
e1000410
doi:10.1371/journal.pgen.1000410
16. BarberaMA
PetesTD
2006
Selection and analysis of spontaneous reciprocal mitotic cross-overs in Saccharomyces cerevisiae.
Proc Natl Acad Sci U S A
103
12819
12824
17. LeePS
PetesTD
2010
From the Cover: mitotic gene conversion events induced in G1-synchronized yeast cells by gamma rays are similar to spontaneous conversion events.
Proc Natl Acad Sci U S A
107
7383
7388
18. JonesEW
FinkGR
1982
Regulation of amino acid and nucleotide biosynthesis in yeast.
StrathernJN
JonesEW
BroachJR
The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression
Cold Spring Harbor, NY
Cold Spring Harbor Press
181
299
19. ChuaP
Jinks-RobertsonS
1991
Segregation of recombinant chromatids following mitotic crossing over in yeast.
Genetics
129
359
369
20. PellicioliA
LeeSE
LuccaC
FoianiM
HaberJE
2001
Regulation of Saccharomyces Rad53 checkpoint kinase during adaptation from DNA damage-induced G2/M arrest.
Mol Cell
7
293
300
21. AylonY
LiefshitzB
KupiecM
2004
The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle.
EMBO J
23
4868
75
22. IraG
PellicioliA
BaliijaA
WangX
FioraniS
2004
DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1.
Nature
431
1011
7
23. RaghuramanMK
WinzelerEA
CollingwoodD
HuntS
WodickaL
2001
Replication dynamics of the yeast genome.
Science
294
115
121
24. MiretJJ
Pessoa-BrandaoL
LahueRS
1998
Orientation-dependent and sequence-specific expansions of CTG/CAG trinucleotide repeats in Saccharomyces cerevisiae.
Proc Natl Acad Sci U S A
95
12438
12443
25. ArguesoJL
WestmorelandJ
MieczkowskiPA
GawelM
PetesTD
2008
Double-strand breaks associated with repetitive DNA can reshape the genome.
Proc Natl Acad Sci U S A
105
11845
11850
26. FreudenreichCH
KantrowSM
ZakianVA
1998
Expansion and length-dependent fragility of CTG repeats in yeast.
Science
279
853
856
27. JankowskiC
NasarF
NagDK
2000
Meiotic instability of CAG repeat tracts occurs by double-strand break repair in yeast.
Proc Natl Acad Sci U S A
97
2134
2139
28. RichardG-F
CyncynatusC
DujonB
2003
Contractions and expansions of CAG/CTG trinucleotide repeats occur during ectopic gene conversion in yeast, by a MUS81-independent mechanism.
J Mol Biol
326
769
82
29. MooreH
GreenwellPW
LiuC-P
ArnheimN
PetesTD
1999
Triplet repeats form secondary structures that escape DNA repair in yeast.
Proc Natl Acad Sci U S A
96
1504
1509
30. PetesTD
2001
Meiotic recombination hot spots and cold spots.
Nat Rev Genet
2
360
369
31. DetloffP
WhiteMA
PetesTD
1992
Analysis of a gene conversion gradient at the HIS4 locus in Saccharomyces cerevisiae.
Genetics
132
113
123
32. LenzmeierBA
FreudenreichCH
2003
Trinucleotide repeat instability: a hairpin curve at the crossroads of replication, recombination, and repair.
Cytogenet Genome Res
100
7
24
33. NagDK
SuriM
StensonEK
2004
Both CAG repeats and inverted DNA repeats stimulate spontaneous unequal sister-chromatid exchange in Saccharomyces cerevisiae.
Nucleic Acids Res
32
5677
5684
34. JeffreysAJ
BarberR
BoisP
BuardJ
DubrovaYE
1999
Human minisatellites, repeat DNA instability and meiotic recombination.
Electrophoresis
20
1665
75
35. DebrauwereH
BuardJ
TessierJ
AubertD
VergnaudG
1999
Meiotic instability of human minisatellite CEB1 in yeast requires DNA double-strand breaks.
Nature Genet
23
367
71
36. BergI
CederbergH
RannugU
2000
Tetrad analysis shows that gene conversion is the major mechanism involved in mutation at the human minisatellite MS1 integrated in Saccharomyces cerevisiae.
Genet Res
75
1
12
37. FanQ
XuF
PetesTD
1995
Meiosis-specific double-strand DNA breaks at the HIS4 recombination hot spot in the yeast Saccharomyces cerevisiae: control in cis and trans.
Mol Cell Biol
15
1679
1688
38. LobachevKS
ShorBM
TranHT
TaylorW
KeenJD
1998
Factors affecting inverted repeat stimulation of recombination and deletion in Saccharomyces cerevisiae.
Genetics
148
1507
1524
39. ThomasBJ
RothsteinR
1989
Elevated recombination rates in transcriptionally active DNA.
Cell
56
619
630
40. AguileraA
2002
The connection between transcription and genomic instability.
Embo J
21
195
201
41. MerkerJD
DominskaM
PetesTD
2003
Patterns of heteroduplex formation associated with the initiation of meiotic recombination in the yeast Saccharomyces cerevisiae.
Genetics
165
47
63
42. JessopL
AllersT
LichtenM
2005
Infrequent co-conversion of markers flanking a meiotic recombination initiation site in Saccharomyces cerevisiae.
Genetics
169
1353
1367
43. Orr-WeaverTL
SzostakJW
1983
Yeast recombination: the association between double-strand gap repair and crossing-over.
Proc Natl Acad Sci U S A
80
4417
4421
44. ClikemanJA
WheelerSL
NickoloffJA
2001
Efficient incorporation of large (>2 kb) heterologies into heteroduplex DNA: Pms1/Msh2-dependent and -independent large loop mismatch repair in Saccharomyces cerevisiae.
Genetics
157
1481
1491
45. MitchelK
ZhangH
Welz-VoegeleC
Jinks-RobertsonS
2010
Molecular structures of crossover and noncrossover intermediates during gap repair in yeast: implications for recombination.
Mol Cell
38
211
222
46. De BiaseI
RasmussenA
MonticelliA
Al-MahdawiS
PookM
2007
Somatic instability of the expanded GAA triplet-repeat sequence in Friedreich ataxia progresses throughout life.
Genomics
90
1
5
47. ClarkRM
BhaskarSS
MiyaharaM
DalglieshGL
BidichandaniSI
2006
Expansion of GAA trinucleotide repeats in mammals.
Genomics
87
57
67
48. GuthrieC
FinkGR
1991
Guide to Yeast Genetics and Molecular Biology.
San Diego
Academic Press
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2011 Číslo 1
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
Najčítanejšie v tomto čísle
- H3K9me-Independent Gene Silencing in Fission Yeast Heterochromatin by Clr5 and Histone Deacetylases
- Rnf12—A Jack of All Trades in X Inactivation?
- Joint Genetic Analysis of Gene Expression Data with Inferred Cellular Phenotypes
- Evolutionary Conserved Regulation of HIF-1β by NF-κB