#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Friedreich's Ataxia (GAA)•(TTC) Repeats Strongly Stimulate Mitotic Crossovers in


Expansions of trinucleotide GAA•TTC tracts are associated with the human disease Friedreich's ataxia, and long GAA•TTC tracts elevate genome instability in yeast. We show that tracts of (GAA)230•(TTC)230 stimulate mitotic crossovers in yeast about 10,000-fold relative to a “normal” DNA sequence; (GAA)n•(TTC)n tracts, however, do not significantly elevate meiotic recombination. Most of the mitotic crossovers are associated with a region of non-reciprocal transfer of information (gene conversion). The major class of recombination events stimulated by (GAA)n•(TTC)n tracts is a tract-associated double-strand break (DSB) that occurs in unreplicated chromosomes, likely in G1 of the cell cycle. These findings indicate that (GAA)n•(TTC)n tracts can be a potent source of loss of heterozygosity in yeast.


Vyšlo v časopise: Friedreich's Ataxia (GAA)•(TTC) Repeats Strongly Stimulate Mitotic Crossovers in. PLoS Genet 7(1): e32767. doi:10.1371/journal.pgen.1001270
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001270

Souhrn

Expansions of trinucleotide GAA•TTC tracts are associated with the human disease Friedreich's ataxia, and long GAA•TTC tracts elevate genome instability in yeast. We show that tracts of (GAA)230•(TTC)230 stimulate mitotic crossovers in yeast about 10,000-fold relative to a “normal” DNA sequence; (GAA)n•(TTC)n tracts, however, do not significantly elevate meiotic recombination. Most of the mitotic crossovers are associated with a region of non-reciprocal transfer of information (gene conversion). The major class of recombination events stimulated by (GAA)n•(TTC)n tracts is a tract-associated double-strand break (DSB) that occurs in unreplicated chromosomes, likely in G1 of the cell cycle. These findings indicate that (GAA)n•(TTC)n tracts can be a potent source of loss of heterozygosity in yeast.


Zdroje

1. MirkinSM

2007

Expandable DNA repeats and human disease.

Nature

447

932

940

2. KovtunIV

McMurrayCT

2008

Features of trinucleotide repeat instability in vivo.

Cell Res

18

198

213

3. CampuzanoV

MonterminiL

MoltoMD

PianeseL

CosseeM

1996

Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion.

Science

271

1423

1427

4. KrasilnikovaMM

MirkinSM

2004

Replication stalling at Friedreich's ataxia (GAA)n repeats in vivo.

Mol Cell Biol

24

2286

2295

5. KimHM

NarayananV

MieczkowskiPA

PetesTD

KrasilnikovaMM

2008

Chromosome fragility at GAA tracts in yeast depends on repeat orientation and requires mismatch repair.

Embo J

27

2896

2906

6. ShishkinAA

VoineaguI

MateraR

CherngN

ChernetBT

2009

Large-scale expansions of Friedreich's ataxia GAA repeats in yeast.

Mol Cell

35

82

92

7. NapieralaM

DereR

VetcherA

WellsRD

2004

Structure-dependent recombination hot spot activity of GAA.TTC sequences from intron 1 of the Friedreich's ataxia gene.

J Biol Chem

279

6444

6454

8. DitchS

SammarcoMC

BanerjeeA

GrabczykE

2009

Progressive GAA.TTC repeat expansion in human cell lines.

PLoS Genet

5

e1000704

doi:10.1371/journal.pgen.1000704

9. WangG

VasquezKM

2009

Models for chromosomal replication-independent non-B DNA structure-induced genetic instability.

Mol Carcinog

48

286

298

10. LinY

DentSY

WilsonJH

WellsRD

NapieralaM

2010

R loops stimulate genetic instability of CTG.CAG repeats.

Proc Natl Acad Sci U S A

107

692

697

11. PetesTD

MaloneRE

SymingtonLS

1991

Recombination in yeast.

BroachJR

JonesEW

PringleJR

The Molecular and Cellular Biology of the Yeast Saccharomyces

Cold Spring Harbor

Cold Spring Harbor Press

407

521

12. PaquesF

HaberJE

1999

Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae.

Microbiol Mol Biol Rev

63

349

404

13. HunterN

2007

Meiotic recombination.

AguileraAA

RothsteinR

Molecular Genetics of Recombination

Berlin, Heidelberg, and New York

Springer

381

442

14. ManceraE

BourgonR

BrozziA

HuberW

SteinmetzLM

2008

High-resolution mapping of meiotic crossovers and non-crossovers in yeast.

Nature

454

479

485

15. LeePS

GreenwellPW

DominskaM

GawelM

HamiltonM

2009

A fine-structure map of spontaneous mitotic crossovers in the yeast Saccharomyces cerevisiae.

PLoS Genet

5

e1000410

doi:10.1371/journal.pgen.1000410

16. BarberaMA

PetesTD

2006

Selection and analysis of spontaneous reciprocal mitotic cross-overs in Saccharomyces cerevisiae.

Proc Natl Acad Sci U S A

103

12819

12824

17. LeePS

PetesTD

2010

From the Cover: mitotic gene conversion events induced in G1-synchronized yeast cells by gamma rays are similar to spontaneous conversion events.

Proc Natl Acad Sci U S A

107

7383

7388

18. JonesEW

FinkGR

1982

Regulation of amino acid and nucleotide biosynthesis in yeast.

StrathernJN

JonesEW

BroachJR

The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression

Cold Spring Harbor, NY

Cold Spring Harbor Press

181

299

19. ChuaP

Jinks-RobertsonS

1991

Segregation of recombinant chromatids following mitotic crossing over in yeast.

Genetics

129

359

369

20. PellicioliA

LeeSE

LuccaC

FoianiM

HaberJE

2001

Regulation of Saccharomyces Rad53 checkpoint kinase during adaptation from DNA damage-induced G2/M arrest.

Mol Cell

7

293

300

21. AylonY

LiefshitzB

KupiecM

2004

The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle.

EMBO J

23

4868

75

22. IraG

PellicioliA

BaliijaA

WangX

FioraniS

2004

DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1.

Nature

431

1011

7

23. RaghuramanMK

WinzelerEA

CollingwoodD

HuntS

WodickaL

2001

Replication dynamics of the yeast genome.

Science

294

115

121

24. MiretJJ

Pessoa-BrandaoL

LahueRS

1998

Orientation-dependent and sequence-specific expansions of CTG/CAG trinucleotide repeats in Saccharomyces cerevisiae.

Proc Natl Acad Sci U S A

95

12438

12443

25. ArguesoJL

WestmorelandJ

MieczkowskiPA

GawelM

PetesTD

2008

Double-strand breaks associated with repetitive DNA can reshape the genome.

Proc Natl Acad Sci U S A

105

11845

11850

26. FreudenreichCH

KantrowSM

ZakianVA

1998

Expansion and length-dependent fragility of CTG repeats in yeast.

Science

279

853

856

27. JankowskiC

NasarF

NagDK

2000

Meiotic instability of CAG repeat tracts occurs by double-strand break repair in yeast.

Proc Natl Acad Sci U S A

97

2134

2139

28. RichardG-F

CyncynatusC

DujonB

2003

Contractions and expansions of CAG/CTG trinucleotide repeats occur during ectopic gene conversion in yeast, by a MUS81-independent mechanism.

J Mol Biol

326

769

82

29. MooreH

GreenwellPW

LiuC-P

ArnheimN

PetesTD

1999

Triplet repeats form secondary structures that escape DNA repair in yeast.

Proc Natl Acad Sci U S A

96

1504

1509

30. PetesTD

2001

Meiotic recombination hot spots and cold spots.

Nat Rev Genet

2

360

369

31. DetloffP

WhiteMA

PetesTD

1992

Analysis of a gene conversion gradient at the HIS4 locus in Saccharomyces cerevisiae.

Genetics

132

113

123

32. LenzmeierBA

FreudenreichCH

2003

Trinucleotide repeat instability: a hairpin curve at the crossroads of replication, recombination, and repair.

Cytogenet Genome Res

100

7

24

33. NagDK

SuriM

StensonEK

2004

Both CAG repeats and inverted DNA repeats stimulate spontaneous unequal sister-chromatid exchange in Saccharomyces cerevisiae.

Nucleic Acids Res

32

5677

5684

34. JeffreysAJ

BarberR

BoisP

BuardJ

DubrovaYE

1999

Human minisatellites, repeat DNA instability and meiotic recombination.

Electrophoresis

20

1665

75

35. DebrauwereH

BuardJ

TessierJ

AubertD

VergnaudG

1999

Meiotic instability of human minisatellite CEB1 in yeast requires DNA double-strand breaks.

Nature Genet

23

367

71

36. BergI

CederbergH

RannugU

2000

Tetrad analysis shows that gene conversion is the major mechanism involved in mutation at the human minisatellite MS1 integrated in Saccharomyces cerevisiae.

Genet Res

75

1

12

37. FanQ

XuF

PetesTD

1995

Meiosis-specific double-strand DNA breaks at the HIS4 recombination hot spot in the yeast Saccharomyces cerevisiae: control in cis and trans.

Mol Cell Biol

15

1679

1688

38. LobachevKS

ShorBM

TranHT

TaylorW

KeenJD

1998

Factors affecting inverted repeat stimulation of recombination and deletion in Saccharomyces cerevisiae.

Genetics

148

1507

1524

39. ThomasBJ

RothsteinR

1989

Elevated recombination rates in transcriptionally active DNA.

Cell

56

619

630

40. AguileraA

2002

The connection between transcription and genomic instability.

Embo J

21

195

201

41. MerkerJD

DominskaM

PetesTD

2003

Patterns of heteroduplex formation associated with the initiation of meiotic recombination in the yeast Saccharomyces cerevisiae.

Genetics

165

47

63

42. JessopL

AllersT

LichtenM

2005

Infrequent co-conversion of markers flanking a meiotic recombination initiation site in Saccharomyces cerevisiae.

Genetics

169

1353

1367

43. Orr-WeaverTL

SzostakJW

1983

Yeast recombination: the association between double-strand gap repair and crossing-over.

Proc Natl Acad Sci U S A

80

4417

4421

44. ClikemanJA

WheelerSL

NickoloffJA

2001

Efficient incorporation of large (>2 kb) heterologies into heteroduplex DNA: Pms1/Msh2-dependent and -independent large loop mismatch repair in Saccharomyces cerevisiae.

Genetics

157

1481

1491

45. MitchelK

ZhangH

Welz-VoegeleC

Jinks-RobertsonS

2010

Molecular structures of crossover and noncrossover intermediates during gap repair in yeast: implications for recombination.

Mol Cell

38

211

222

46. De BiaseI

RasmussenA

MonticelliA

Al-MahdawiS

PookM

2007

Somatic instability of the expanded GAA triplet-repeat sequence in Friedreich ataxia progresses throughout life.

Genomics

90

1

5

47. ClarkRM

BhaskarSS

MiyaharaM

DalglieshGL

BidichandaniSI

2006

Expansion of GAA trinucleotide repeats in mammals.

Genomics

87

57

67

48. GuthrieC

FinkGR

1991

Guide to Yeast Genetics and Molecular Biology.

San Diego

Academic Press

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2011 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#