#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Evolutionary Conserved Regulation of HIF-1β by NF-κB


Hypoxia Inducible Factor-1 (HIF-1) is essential for mammalian development and is the principal transcription factor activated by low oxygen tensions. HIF-α subunit quantities and their associated activity are regulated in a post-translational manner, through the concerted action of a class of enzymes called Prolyl Hydroxylases (PHDs) and Factor Inhibiting HIF (FIH) respectively. However, alternative modes of HIF-α regulation such as translation or transcription are under-investigated, and their importance has not been firmly established. Here, we demonstrate that NF-κB regulates the HIF pathway in a significant and evolutionary conserved manner. We demonstrate that NF-κB directly regulates HIF-1β mRNA and protein. In addition, we found that NF-κB–mediated changes in HIF-1β result in modulation of HIF-2α protein. HIF-1β overexpression can rescue HIF-2α protein levels following NF-κB depletion. Significantly, NF-κB regulates HIF-1β (tango) and HIF-α (sima) levels and activity (Hph/fatiga, ImpL3/ldha) in Drosophila, both in normoxia and hypoxia, indicating an evolutionary conserved mode of regulation. These results reveal a novel mechanism of HIF regulation, with impact in the development of novel therapeutic strategies for HIF–related pathologies including ageing, ischemia, and cancer.


Vyšlo v časopise: Evolutionary Conserved Regulation of HIF-1β by NF-κB. PLoS Genet 7(1): e32767. doi:10.1371/journal.pgen.1001285
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001285

Souhrn

Hypoxia Inducible Factor-1 (HIF-1) is essential for mammalian development and is the principal transcription factor activated by low oxygen tensions. HIF-α subunit quantities and their associated activity are regulated in a post-translational manner, through the concerted action of a class of enzymes called Prolyl Hydroxylases (PHDs) and Factor Inhibiting HIF (FIH) respectively. However, alternative modes of HIF-α regulation such as translation or transcription are under-investigated, and their importance has not been firmly established. Here, we demonstrate that NF-κB regulates the HIF pathway in a significant and evolutionary conserved manner. We demonstrate that NF-κB directly regulates HIF-1β mRNA and protein. In addition, we found that NF-κB–mediated changes in HIF-1β result in modulation of HIF-2α protein. HIF-1β overexpression can rescue HIF-2α protein levels following NF-κB depletion. Significantly, NF-κB regulates HIF-1β (tango) and HIF-α (sima) levels and activity (Hph/fatiga, ImpL3/ldha) in Drosophila, both in normoxia and hypoxia, indicating an evolutionary conserved mode of regulation. These results reveal a novel mechanism of HIF regulation, with impact in the development of novel therapeutic strategies for HIF–related pathologies including ageing, ischemia, and cancer.


Zdroje

1. RochaS

2007

Gene regulation under low oxygen: holding your breath for transcription.

Trends Biochem Sci

32

389

397

2. KennethNS

RochaS

2008

Regulation of gene expression by hypoxia.

Biochem J

414

19

29

3. FandreyJ

GorrTA

GassmannM

2006

Regulating cellular oxygen sensing by hydroxylation.

Cardiovasc Res

71

642

651

4. GorrTA

GassmannM

WappnerP

2006

Sensing and responding to hypoxia via HIF in model invertebrates.

J Insect Physiol

52

349

364

5. EpsteinAC

GleadleJM

McNeillLA

HewitsonKS

O'RourkeJ

2001

C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation.

Cell

107

43

54

6. JiangH

GuoR

Powell-CoffmanJA

2001

The Caenorhabditis elegans hif-1 gene encodes a bHLH-PAS protein that is required for adaptation to hypoxia.

Proc Natl Acad Sci U S A

98

7916

7921

7. CentaninL

RatcliffePJ

WappnerP

2005

Reversion of lethality and growth defects in Fatiga oxygen-sensor mutant flies by loss of hypoxia-inducible factor-alpha/Sima.

EMBO Rep

6

1070

1075

8. Lavista-LlanosS

CentaninL

IrisarriM

RussoDM

GleadleJM

2002

Control of the hypoxic response in Drosophila melanogaster by the basic helix-loop-helix PAS protein similar.

Mol Cell Biol

22

6842

6853

9. MaE

HaddadGG

1999

Isolation and characterization of the hypoxia-inducible factor 1beta in Drosophila melanogaster.

Brain Res Mol Brain Res

73

11

16

10. TaylorPC

SivakumarB

2005

Hypoxia and angiogenesis in rheumatoid arthritis.

Curr Opin Rheumatol

17

293

298

11. CatrinaSB

OkamotoK

PereiraT

BrismarK

PoellingerL

2004

Hyperglycemia regulates hypoxia-inducible factor-1alpha protein stability and function.

Diabetes

53

3226

3232

12. BonelloS

ZahringerC

BelAibaRS

DjordjevicT

HessJ

2007

Reactive oxygen species activate the HIF-1alpha promoter via a functional NFkappaB site.

Arterioscler Thromb Vasc Biol

27

755

761

13. RiusJ

GumaM

SchachtrupC

AkassoglouK

ZinkernagelAS

2008

NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha.

Nature

453

807

811

14. van UdenP

KennethNS

RochaS

2008

Regulation of hypoxia-inducible factor-1alpha by NF-kappaB.

Biochem J

412

477

484

15. KennethNS

MudieS

van UdenP

RochaS

2009

SWI/SNF regulates the cellular response to hypoxia.

J Biol Chem

284

4123

4131

16. HaydenMS

GhoshS

2008

Shared principles in NF-kappaB signaling.

Cell

132

344

362

17. PerkinsND

2006

Post-translational modifications regulating the activity and function of the nuclear factor kappa B pathway.

Oncogene

25

6717

6730

18. PerkinsND

GilmoreTD

2006

Good cop, bad cop: the different faces of NF-kappaB.

Cell Death Differ

13

759

772

19. KarinM

YamamotoY

WangQM

2004

The IKK NF-kappa B system: a treasure trove for drug development.

Nat Rev Drug Discov

3

17

26

20. MinakhinaS

StewardR

2006

Nuclear factor-kappa B pathways in Drosophila.

Oncogene

25

6749

6757

21. HetruC

HoffmannJA

2009

NF-kappaB in the immune response of Drosophila.

Cold Spring Harb Perspect Biol

1

a000232

22. ChariotA

2009

The NF-kappaB-independent functions of IKK subunits in immunity and cancer.

Trends Cell Biol

19

404

413

23. BockKW

KohleC

2009

The mammalian aryl hydrocarbon (Ah) receptor: from mediator of dioxin toxicity toward physiological functions in skin and liver.

Biol Chem

390

1225

1235

24. DekantyA

RomeroNM

BertolinAP

ThomasMG

LeishmanCC

2010

Drosophila genome-wide RNAi screen identifies multiple regulators of HIF-dependent transcription in hypoxia.

PLoS Genet

6

e1000994

doi:10.1371/journal.pgen.1000994

25. WangXL

SuzukiR

LeeK

TranT

GuntonJE

2009

Ablation of ARNT/HIF1beta in liver alters gluconeogenesis, lipogenic gene expression, and serum ketones.

Cell Metab

9

428

439

26. YimSH

ShahY

TomitaS

MorrisHD

GavrilovaO

2006

Disruption of the Arnt gene in endothelial cells causes hepatic vascular defects and partial embryonic lethality in mice.

Hepatology

44

550

560

27. TomitaS

JiangHB

UenoT

TakagiS

TohiK

2003

T cell-specific disruption of arylhydrocarbon receptor nuclear translocator (Arnt) gene causes resistance to 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced thymic involution.

J Immunol

171

4113

4120

28. GengS

MezentsevA

KalachikovS

RaithK

RoopDR

2006

Targeted ablation of Arnt in mouse epidermis results in profound defects in desquamation and epidermal barrier function.

J Cell Sci

119

4901

4912

29. TomitaS

SinalCJ

YimSH

GonzalezFJ

2000

Conditional disruption of the aryl hydrocarbon receptor nuclear translocator (Arnt) gene leads to loss of target gene induction by the aryl hydrocarbon receptor and hypoxia-inducible factor 1alpha.

Mol Endocrinol

14

1674

1681

30. AbbottBD

BuckalewAR

2000

Placental defects in ARNT-knockout conceptus correlate with localized decreases in VEGF-R2, Ang-1, and Tie-2.

Dev Dyn

219

526

538

31. SekineH

MimuraJ

YamamotoM

Fujii-KuriyamaY

2006

Unique and overlapping transcriptional roles of arylhydrocarbon receptor nuclear translocator (Arnt) and Arnt2 in xenobiotic and hypoxic responses.

J Biol Chem

281

37507

37516

32. GradinK

McGuireJ

WengerRH

KvietikovaI

fhitelawML

1996

Functional interference between hypoxia and dioxin signal transduction pathways: competition for recruitment of the Arnt transcription factor.

Mol Cell Biol

16

5221

5231

33. KallioPJ

PongratzI

GradinK

McGuireJ

PoellingerL

1997

Activation of hypoxia-inducible factor 1alpha: posttranscriptional regulation and conformational change by recruitment of the Arnt transcription factor.

Proc Natl Acad Sci U S A

94

5667

5672

34. FlemingCR

BilliardSM

Di GiulioRT

2009

Hypoxia inhibits induction of aryl hydrocarbon receptor activity in topminnow hepatocarcinoma cells in an ARNT-dependent manner.

Comp Biochem Physiol C Toxicol Pharmacol

150

383

389

35. KeS

RabsonAB

GerminoJF

GalloMA

TianY

2001

Mechanism of suppression of cytochrome P-450 1A1 expression by tumor necrosis factor-alpha and lipopolysaccharide.

J Biol Chem

276

39638

39644

36. ZordokyBN

El-KadiAO

2009

Role of NF-kappaB in the regulation of cytochrome P450 enzymes.

Curr Drug Metab

10

164

178

37. IsaacsJS

JungYJ

MimnaughEG

MartinezA

CuttittaF

2002

Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1 alpha-degradative pathway.

J Biol Chem

277

29936

29944

38. LiuYV

BaekJH

ZhangH

DiezR

ColeRN

2007

RACK1 competes with HSP90 for binding to HIF-1alpha and is required for O(2)-independent and HSP90 inhibitor-induced degradation of HIF-1alpha.

Mol Cell

25

207

217

39. LiuYV

HubbiME

PanF

McDonaldKR

MansharamaniM

2007

Calcineurin promotes hypoxia-inducible factor 1alpha expression by dephosphorylating RACK1 and blocking RACK1 dimerization.

J Biol Chem

282

37064

37073

40. FlugelD

GorlachA

MichielsC

KietzmannT

2007

Glycogen synthase kinase 3 phosphorylates hypoxia-inducible factor 1alpha and mediates its destabilization in a VHL-independent manner.

Mol Cell Biol

27

3253

3265

41. ChoiH

ChunYS

KimSW

KimMS

ParkJW

2006

Curcumin inhibits hypoxia-inducible factor-1 by degrading aryl hydrocarbon receptor nuclear translocator: a mechanism of tumor growth inhibition.

Mol Pharmacol

70

1664

1671

42. ThomasSL

ZhongD

ZhouW

MalikS

LiottaD

2008

EF24, a novel curcumin analog, disrupts the microtubule cytoskeleton and inhibits HIF-1.

Cell Cycle

7

2409

2417

43. LinJK

2007

Molecular targets of curcumin.

Adv Exp Med Biol

595

227

243

44. LofstedtT

FredlundE

Holmquist-MengelbierL

PietrasA

OvenbergerM

2007

Hypoxia inducible factor-2alpha in cancer.

Cell Cycle

6

919

926

45. TongX

YinL

WashingtonR

RosenbergDW

GiardinaC

2004

The p50-p50 NF-kappaB complex as a stimulus-specific repressor of gene activation.

Mol Cell Biochem

265

171

183

46. GuanH

HouS

RicciardiRP

2005

DNA binding of repressor nuclear factor-kappaB p50/p50 depends on phosphorylation of Ser337 by the protein kinase A catalytic subunit.

J Biol Chem

280

9957

9962

47. CulverC

SundqvistA

MudieS

MelvinA

XirodimasD

2010

Mechanism of hypoxia-induced NF-kappaB.

Mol Cell Biol

30

4901

4921

48. AndersonLA

PerkinsND

2003

Regulation of RelA (p65) function by the large subunit of replication factor C.

Mol Cell Biol

23

721

732

49. NewtonIP

KennethNS

AppletonPL

NathkeI

RochaS

2010

Adenomatous polyposis coli and hypoxia-inducible factor-1{alpha} have an antagonistic connection.

Mol Biol Cell

21

3630

3638

50. KennethNS

MudieS

RochaS

IKK and NF-kappaB-mediated regulation of Claspin impacts on ATR checkpoint function.

EMBO J

29

2966

2978

51. NUSSLEIN-VOLHARDC

1979

Maternal effect mutations that alter the spatial coordinates of the embryo of Drosophila melanogaster:

New York

Academic Press Inc

52. RothS

HiromiY

GodtD

Nusslein-VolhardC

1991

cactus, a maternal gene required for proper formation of the dorsoventral morphogen gradient in Drosophila embryos.

Development

112

371

388

53. BossingT

BarrosCS

BrandAH

2002

Rapid tissue-specific expression assay in living embryos.

Genesis

34

123

126

54. RutschmannS

JungAC

HetruC

ReichhartJM

HoffmannJA

2000

The Rel protein DIF mediates the antifungal but not the antibacterial host defense in Drosophila.

Immunity

12

569

580

55. HedengrenM

AslingB

DushayMS

AndoI

EkengrenS

1999

Relish, a central factor in the control of humoral but not cellular immunity in Drosophila.

Mol Cell

4

827

837

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2011 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#