Comparative Study between Transcriptionally- and Translationally-Acting Adenine Riboswitches Reveals Key Differences in Riboswitch Regulatory Mechanisms
Many bacterial mRNAs are regulated at the transcriptional or translational level by ligand-binding elements called riboswitches. Although they both bind adenine, the adenine riboswitches of Bacillus subtilis and Vibrio vulnificus differ by controlling transcription and translation, respectively. Here, we demonstrate that, beyond the obvious difference in transcriptional and translational modulation, both adenine riboswitches exhibit different ligand binding properties and appear to operate under different regulation regimes (kinetic versus thermodynamic). While the B. subtilis pbuE riboswitch fully depends on co-transcriptional binding of adenine to function, the V. vulnificus add riboswitch can bind to adenine after transcription is completed and still perform translation regulation. Further investigation demonstrates that the rate of transcription is critical for the B. subtilis pbuE riboswitch to perform efficiently, which is in agreement with a co-transcriptional regulation. Our results suggest that the nature of gene regulation control, that is transcription or translation, may have a high importance in riboswitch regulatory mechanisms.
Vyšlo v časopise:
Comparative Study between Transcriptionally- and Translationally-Acting Adenine Riboswitches Reveals Key Differences in Riboswitch Regulatory Mechanisms. PLoS Genet 7(1): e32767. doi:10.1371/journal.pgen.1001278
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1001278
Souhrn
Many bacterial mRNAs are regulated at the transcriptional or translational level by ligand-binding elements called riboswitches. Although they both bind adenine, the adenine riboswitches of Bacillus subtilis and Vibrio vulnificus differ by controlling transcription and translation, respectively. Here, we demonstrate that, beyond the obvious difference in transcriptional and translational modulation, both adenine riboswitches exhibit different ligand binding properties and appear to operate under different regulation regimes (kinetic versus thermodynamic). While the B. subtilis pbuE riboswitch fully depends on co-transcriptional binding of adenine to function, the V. vulnificus add riboswitch can bind to adenine after transcription is completed and still perform translation regulation. Further investigation demonstrates that the rate of transcription is critical for the B. subtilis pbuE riboswitch to perform efficiently, which is in agreement with a co-transcriptional regulation. Our results suggest that the nature of gene regulation control, that is transcription or translation, may have a high importance in riboswitch regulatory mechanisms.
Zdroje
1. WatersLS
StorzG
2009 Regulatory RNAs in bacteria. Cell 136 615 628
2. KeeneJD
2007 RNA regulons: coordination of post-transcriptional events. Nat Rev Genet 8 533 543
3. SerganovA
PatelDJ
2007 Ribozymes, riboswitches and beyond: regulation of gene expression without proteins. Nat Rev Genet 8 776 790
4. RothA
BreakerRR
2009 The structural and functional diversity of metabolite-binding riboswitches. Annu Rev Biochem 78 305 334
5. BlouinS
MulhbacherJ
PenedoJC
LafontaineDA
2009 Riboswitches: ancient and promising genetic regulators. Chembiochem 10 400 416
6. CromieMJ
ShiY
LatifiT
GroismanEA
2006 An RNA sensor for intracellular Mg(2+). Cell 125 71 84
7. DannCE3rd
WakemanCA
SielingCL
BakerSC
IrnovI
2007 Structure and mechanism of a metal-sensing regulatory RNA. Cell 130 878 892
8. MoritaMT
TanakaY
KodamaTS
KyogokuY
YanagiH
1999 Translational induction of heat shock transcription factor sigma32: evidence for a built-in RNA thermosensor. Genes Dev 13 655 665
9. MoritaM
KanemoriM
YanagiH
YuraT
1999 Heat-induced synthesis of sigma32 in Escherichia coli: structural and functional dissection of rpoH mRNA secondary structure. J Bacteriol 181 401 410
10. SerganovA
2009 The long and the short of riboswitches. Curr Opin Struct Biol 19 251 259
11. DambachMD
WinklerWC
2009 Expanding roles for metabolite-sensing regulatory RNAs. Curr Opin Microbiol 12 161 169
12. HenkinTM
2008 Riboswitch RNAs: using RNA to sense cellular metabolism. Genes Dev 22 3383 3390
13. HenkinTM
2009 RNA-dependent RNA switches in bacteria. Methods Mol Biol 540 207 214
14. GrundyFJ
HenkinTM
1993 tRNA as a positive regulator of transcription antitermination in B. subtilis. Cell 74 475 482
15. LohE
DussurgetO
GripenlandJ
VaitkeviciusK
TiensuuT
2009 A trans-acting riboswitch controls expression of the virulence regulator PrfA in Listeria monocytogenes. Cell 139 770 779
16. BateyRT
GilbertSD
MontangeRK
2004 Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature 432 411 415
17. SerganovA
YuanYR
PikovskayaO
PolonskaiaA
MalininaL
2004 Structural Basis for Discriminative Regulation of Gene Expression by Adenine- and Guanine-Sensing mRNAs. Chem Biol 11 1729 1741
18. MandalM
BoeseB
BarrickJE
WinklerWC
BreakerRR
2003 Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell 113 577 586
19. MandalM
BreakerRR
2004 Adenine riboswitches and gene activation by disruption of a transcription terminator. Nat Struct Mol Biol 11 29 35
20. RiederR
LangK
GraberD
MicuraR
2007 Ligand-Induced Folding of the Adenosine Deaminase A-Riboswitch and Implications on Riboswitch Translational Control. Chembiochem 8 896 902
21. WickiserJK
CheahMT
BreakerRR
CrothersDM
2005 The kinetics of ligand binding by an adenine-sensing riboswitch. Biochemistry 44 13404 13414
22. LemayJF
PenedoJC
TremblayR
LilleyDM
LafontaineDA
2006 Folding of the adenine riboswitch. Chem Biol 13 857 868
23. PanT
ArtsimovitchI
FangXW
LandickR
SosnickTR
1999 Folding of a large ribozyme during transcription and the effect of the elongation factor NusA. Proc Natl Acad Sci U S A 96 9545 9550
24. WongTN
SosnickTR
PanT
2007 Folding of noncoding RNAs during transcription facilitated by pausing-induced nonnative structures. Proc Natl Acad Sci U S A 104 17995 18000
25. BrehmSL
CechTR
1983 Fate of an intervening sequence ribonucleic acid: excision and cyclization of the Tetrahymena ribosomal ribonucleic acid intervening sequence in vivo. Biochemistry 22 2390 2397
26. ZarrinkarPP
WilliamsonJR
1994 Kinetic intermediates in RNA folding. Science 265 918 924
27. ZhangF
RamsayES
WoodsonSA
1995 In vivo facilitation of Tetrahymena group I intron splicing in Escherichia coli pre-ribosomal RNA. RNA 1 284 292
28. WickiserJK
WinklerWC
BreakerRR
CrothersDM
2005 The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch. Mol Cell 18 49 60
29. LobanovKV
Korol'kovaNV
EreminaS
Errais LopesL
ProshkinSA
2007 [Mutations altering the specificity of the sensor RNA encoded by the Bacillus subtilis pbuE gene]. Genetika 43 859 864
30. LemayJF
LafontaineDA
2007 Core requirements of the adenine riboswitch aptamer for ligand binding. RNA 13 339 350
31. MulhbacherJ
LafontaineDA
2007 Ligand recognition determinants of guanine riboswitches. Nucleic Acids Res 35 5568 5580
32. GilbertSD
StoddardCD
WiseSJ
BateyRT
2006 Thermodynamic and Kinetic Characterization of Ligand Binding to the Purine Riboswitch Aptamer Domain. J Mol Biol 359 754 768
33. EskandariS
PrychynaO
LeungJ
AvdicD
O'NeillMA
2007 Ligand-Directed Dynamics of Adenine Riboswitch Conformers. J Am Chem Soc
34. PrychynaO
DahabiehMS
ChaoJ
O'NeillMA
2009 Sequence-dependent folding and unfolding of ligand-bound purine riboswitches. Biopolymers 91 953 965
35. WardDC
ReichE
StryerL
1969 Fluorescence studies of nucleotides and polynucleotides. I. Formycin, 2-aminopurine riboside, 2,6-diaminopurine riboside, and their derivatives. J Biol Chem 244 1228 1237
36. StiversJT
1998 2-Aminopurine fluorescence studies of base stacking interactions at abasic sites in DNA: metal-ion and base sequence effects. Nucleic Acids Res 26 3837 3844
37. JeanJM
HallKB
2001 2-Aminopurine fluorescence quenching and lifetimes: role of base stacking. Proc Natl Acad Sci U S A 98 37 41
38. MerinoEJ
WilkinsonKA
CoughlanJL
WeeksKM
2005 RNA structure analysis at single nucleotide resolution by selective 2′-hydroxyl acylation and primer extension (SHAPE). J Am Chem Soc 127 4223 4231
39. BennettBD
KimballEH
GaoM
OsterhoutR
Van DienSJ
2009 Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat Chem Biol 5 593 599
40. WinklerWC
NahviA
SudarsanN
BarrickJE
BreakerRR
2003 An mRNA structure that controls gene expression by binding S-adenosylmethionine. Nat Struct Biol 10 701 707
41. SudarsanN
WickiserJK
NakamuraS
EbertMS
BreakerRR
2003 An mRNA structure in bacteria that controls gene expression by binding lysine. Genes Dev 17 2688 2697
42. GrundyFJ
LehmanSC
HenkinTM
2003 The L box regulon: lysine sensing by leader RNAs of bacterial lysine biosynthesis genes. Proc Natl Acad Sci U S A 100 12057 12062
43. MironovAS
GusarovI
RafikovR
LopezLE
ShatalinK
2002 Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria. Cell 111 747 756
44. WinklerWC
Cohen-ChalamishS
BreakerRR
2002 An mRNA structure that controls gene expression by binding FMN. Proc Natl Acad Sci U S A 99 15908 15913
45. WinklerW
NahviA
BreakerRR
2002 Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 419 952 956
46. BlouinS
LafontaineDA
2007 A loop-loop interaction and a K-turn motif located in the lysine aptamer domain are important for the riboswitch gene regulation control. RNA 13 1256 1267
47. SchaakJE
BabitzkeP
BevilacquaPC
2003 Phylogenetic conservation of RNA secondary and tertiary structure in the trpEDCFBA operon leader transcript in Bacillus. Rna 9 1502 1515
48. GreenleafWJ
FriedaKL
FosterDA
WoodsideMT
BlockSM
2008 Direct observation of hierarchical folding in single riboswitch aptamers. Science 319 630 633
49. McDowellJC
RobertsJW
JinDJ
GrossC
1994 Determination of intrinsic transcription termination efficiency by RNA polymerase elongation rate. Science 266 822 825
50. NechooshtanG
Elgrably-WeissM
SheafferA
WesthofE
AltuviaS
2009 A pH-responsive riboregulator. Genes Dev 23 2650 2662
51. FarnhamPJ
GreenblattJ
PlattT
1982 Effects of NusA protein on transcription termination in the tryptophan operon of Escherichia coli. Cell 29 945 951
52. VerhounigA
KarcherD
BockR
2010 Inducible gene expression from the plastid genome by a synthetic riboswitch. Proc Natl Acad Sci U S A 107 6204 6209
53. NygaardP
SaxildHH
2005 The purine efflux pump PbuE in Bacillus subtilis modulates expression of the PurR and G-box (XptR) regulons by adjusting the purine base pool size. J Bacteriol 187 791 794
54. NouX
KadnerRJ
2000 Adenosylcobalamin inhibits ribosome binding to btuB RNA. Proc Natl Acad Sci U S A 97 7190 7195
55. NahviA
SudarsanN
EbertMS
ZouX
BrownKL
2002 Genetic control by a metabolite binding mRNA. Chem Biol 9 1043
56. FuchsRT
GrundyFJ
HenkinTM
2006 The S(MK) box is a new SAM-binding RNA for translational regulation of SAM synthetase. Nat Struct Mol Biol 13 226 233
57. BairdNJ
Ferre-D'AmareAR
Idiosyncratically tuned switching behavior of riboswitch aptamer domains revealed by comparative small-angle X-ray scattering analysis. RNA 16 598 609
58. LangK
RiederR
MicuraR
2007 Ligand-induced folding of the thiM TPP riboswitch investigated by a structure-based fluorescence spectroscopic approach. Nucleic Acids Res 35 5370 5378
59. RentmeisterA
MayerG
KuhnN
FamulokM
2007 Conformational changes in the expression domain of the Escherichia coli thiM riboswitch. Nucleic Acids Res 35 3713 3722
60. BurmannBM
SchweimerK
LuoX
WahlMC
StittBL
2010 A NusE:NusG complex links transcription and translation. Science 328 501 504
61. RiederU
KreutzC
MicuraR
2010 Folding of a transcriptionally acting preQ1 riboswitch. Proc Natl Acad Sci U S A 107 10804 10809
62. KulshinaN
BairdNJ
Ferre-D'AmareAR
2009 Recognition of the bacterial second messenger cyclic diguanylate by its cognate riboswitch. Nat Struct Mol Biol 16 1212 1217
63. SmithKD
LipchockSV
AmesTD
WangJ
BreakerRR
2009 Structural basis of ligand binding by a c-di-GMP riboswitch. Nat Struct Mol Biol 16 1218 1223
64. PanT
SosnickT
2006 RNA folding during transcription. Annu Rev Biophys Biomol Struct 35 161 175
65. JohansenLE
NygaardP
LassenC
AgersoY
SaxildHH
2003 Definition of a second Bacillus subtilis pur regulon comprising the pur and xpt-pbuX operons plus pbuG, nupG (yxjA), and pbuE (ydhL). J Bacteriol 185 5200 5209
66. RepoilaF
MajdalaniN
GottesmanS
2003 Small non-coding RNAs, co-ordinators of adaptation processes in Escherichia coli: the RpoS paradigm. Mol Microbiol 48 855 861
67. SimonsRW
HoumanF
KlecknerN
1987 Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene 53 85 96
68. DesnoyersG
MorissetteA
PrevostK
MasseE
2009 Small RNA-induced differential degradation of the polycistronic mRNA iscRSUA. EMBO J 28 1551 1561
69. MasseE
GottesmanS
2002 A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci U S A 99 4620 4625
70. PowellBS
RivasMP
CourtDL
NakamuraY
TurnboughCLJr
1994 Rapid confirmation of single copy lambda prophage integration by PCR. Nucleic Acids Res 22 5765 5766
71. PleissJA
DerrickML
UhlenbeckOC
1998 T7 RNA polymerase produces 5′ end heterogeneity during in vitro transcription from certain templates. Rna 4 1313 1317
72. FlanneryBP
TeukolskySA
VetterlingWT
1992 Numerical Recipes in Fortran, 2nd Edn Cambridge Cambridge University Press, UK
73. RistM
MarinoJ
2001 Association of an RNA kissing complex analyzed using 2-aminopurine fluorescence. Nucleic Acids Res 29 2401 2408
74. PrevostK
SalvailH
DesnoyersG
JacquesJF
PhaneufE
2007 The small RNA RyhB activates the translation of shiA mRNA encoding a permease of shikimate, a compound involved in siderophore synthesis. Mol Microbiol 64 1260 1273
75. QiY
HulettFM
1998 PhoP-P and RNA polymerase sigmaA holoenzyme are sufficient for transcription of Pho regulon promoters in Bacillus subtilis: PhoP-P activator sites within the coding region stimulate transcription in vitro. Mol Microbiol 28 1187 1197
76. HelmannJD
2003 Purification of Bacillus subtilis RNA polymerase and associated factors. Methods Enzymol 370 10 24
77. MandalM
LeeM
BarrickJE
WeinbergZ
EmilssonGM
2004 A glycine-dependent riboswitch that uses cooperative binding to control gene expression. Science 306 275 279
78. GrundyFJ
WinklerWC
HenkinTM
2002 tRNA-mediated transcription antitermination in vitro: codon-anticodon pairing independent of the ribosome. Proc Natl Acad Sci U S A 99 11121 11126
79. PuglisiJD
TinocoIJr
1989 Absorbance melting curves of RNA. Methods Enzymol 180 304 325
80. AlbergoDD
MarkyLA
BreslauerKJ
TurnerDH
1981 Thermodynamics of (dG–dC)3 double-helix formation in water and deuterium oxide. Biochemistry 20 1409 1413
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2011 Číslo 1
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- H3K9me-Independent Gene Silencing in Fission Yeast Heterochromatin by Clr5 and Histone Deacetylases
- Rnf12—A Jack of All Trades in X Inactivation?
- Joint Genetic Analysis of Gene Expression Data with Inferred Cellular Phenotypes
- Evolutionary Conserved Regulation of HIF-1β by NF-κB