#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Transcription Initiation Patterns Indicate Divergent Strategies for Gene Regulation at the Chromatin Level


The application of deep sequencing to map 5′ capped transcripts has confirmed the existence of at least two distinct promoter classes in metazoans: “focused” promoters with transcription start sites (TSSs) that occur in a narrowly defined genomic span and “dispersed” promoters with TSSs that are spread over a larger window. Previous studies have explored the presence of genomic features, such as CpG islands and sequence motifs, in these promoter classes, but virtually no studies have directly investigated the relationship with chromatin features. Here, we show that promoter classes are significantly differentiated by nucleosome organization and chromatin structure. Dispersed promoters display higher associations with well-positioned nucleosomes downstream of the TSS and a more clearly defined nucleosome free region upstream, while focused promoters have a less organized nucleosome structure, yet higher presence of RNA polymerase II. These differences extend to histone variants (H2A.Z) and marks (H3K4 methylation), as well as insulator binding (such as CTCF), independent of the expression levels of affected genes. Notably, differences are conserved across mammals and flies, and they provide for a clearer separation of promoter architectures than the presence and absence of CpG islands or the occurrence of stalled RNA polymerase. Computational models support the stronger contribution of chromatin features to the definition of dispersed promoters compared to focused start sites. Our results show that promoter classes defined from 5′ capped transcripts not only reflect differences in the initiation process at the core promoter but also are indicative of divergent transcriptional programs established within gene-proximal nucleosome organization.


Vyšlo v časopise: Transcription Initiation Patterns Indicate Divergent Strategies for Gene Regulation at the Chromatin Level. PLoS Genet 7(1): e32767. doi:10.1371/journal.pgen.1001274
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001274

Souhrn

The application of deep sequencing to map 5′ capped transcripts has confirmed the existence of at least two distinct promoter classes in metazoans: “focused” promoters with transcription start sites (TSSs) that occur in a narrowly defined genomic span and “dispersed” promoters with TSSs that are spread over a larger window. Previous studies have explored the presence of genomic features, such as CpG islands and sequence motifs, in these promoter classes, but virtually no studies have directly investigated the relationship with chromatin features. Here, we show that promoter classes are significantly differentiated by nucleosome organization and chromatin structure. Dispersed promoters display higher associations with well-positioned nucleosomes downstream of the TSS and a more clearly defined nucleosome free region upstream, while focused promoters have a less organized nucleosome structure, yet higher presence of RNA polymerase II. These differences extend to histone variants (H2A.Z) and marks (H3K4 methylation), as well as insulator binding (such as CTCF), independent of the expression levels of affected genes. Notably, differences are conserved across mammals and flies, and they provide for a clearer separation of promoter architectures than the presence and absence of CpG islands or the occurrence of stalled RNA polymerase. Computational models support the stronger contribution of chromatin features to the definition of dispersed promoters compared to focused start sites. Our results show that promoter classes defined from 5′ capped transcripts not only reflect differences in the initiation process at the core promoter but also are indicative of divergent transcriptional programs established within gene-proximal nucleosome organization.


Zdroje

1. CarninciP

SandelinA

LenhardB

KatayamaS

ShimokawaK

2006 Genome-wide analysis of mammalian promoter architecture and evolution. Nat Genet 38 626 635

2. NiT

CorcoranDL

RachEA

SongS

SpanaEP

2010 A paired-end sequencing strategy to map the complex landscape of transcription initiation. Nat Methods 7 521 527

3. Juven-GershonT

KadonagaJT

2010 Regulation of gene expression via the core promoter and the basal transcriptional machinery. Dev Biol 339 225 229

4. OhlerU

WassarmanDA

2010 Promoting developmental transcription. Development 137 15 26

5. NechaevS

FargoDC

Dos SantosG

LiuL

GaoY

2009 Global Analysis of Short RNAs Reveals Widespread Promoter-Proximal Stalling and Arrest of Pol II in Drosophila. Science 327 335 338

6. MavrichTN

JiangC

IoshikhesIP

LiX

VentersBJ

2008 Nucleosome organization in the Drosophila genome. Nature 453 358 362

7. SchonesDE

CuiK

CuddapahS

RohTY

BarskiA

2008 Dynamic regulation of nucleosome positioning in the human genome. Cell 132 887 898

8. JinC

ZangC

WeiG

CuiK

PengW

2009 H3.3/H2A.Z double variant-containing nucleosomes mark ‘nucleosome-free regions’ of active promoters and other regulatory regions. Nat Genet 41 941 945

9. RaisnerRM

HartleyPD

MeneghiniMD

BaoMZ

LiuCL

2005 Histone variant H2A.Z marks the 5′ ends of both active and inactive genes in euchromatin. Cell 123 233 248

10. BarskiA

CuddapahS

CuiK

RohTY

SchonesDE

2007 High-resolution profiling of histone methylations in the human genome. Cell 129 823 837

11. TsukiyamaT

BeckerPB

WuC

1994 ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor. Nature 367 525 532

12. FuY

SinhaM

PetersonCL

WengZ

2008 The insulator binding protein CTCF positions 20 nucleosomes around its binding sites across the human genome. PLoS Genet 4 e1000138doi:10.1371/journal.pgen.1000138

13. IoshikhesIP

AlbertI

ZantonSJ

PughBF

2006 Nucleosome positions predicted through comparative genomics. Nat Genet 38 1210 1215

14. EngstromPG

Ho SuiSJ

DrivenesO

BeckerTS

LenhardB

2007 Genomic regulatory blocks underlie extensive microsynteny conservation in insects. Genome Res 17 1898 1908

15. GanapathiM

SrivastavaP

Das SutarSK

KumarK

DasguptaD

2005 Comparative analysis of chromatin landscape in regulatory regions of human housekeeping and tissue specific genes. BMC Bioinformatics 6 126

16. OhlerU

2006 Identification of core promoter modules in Drosophila and their application in accurate transcription start site prediction. Nucleic Acids Res 34 5943 5950

17. SaxonovS

BergP

BrutlagDL

2006 A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci U S A 103 1412 1417

18. TilloD

KaplanN

MooreIK

Fondufe-MittendorfY

GossettAJ

2010 High nucleosome occupancy is encoded at human regulatory sequences. PLoS ONE 5 e9129doi:10.1371/journal.pone.0009129

19. PongerL

DuretL

MouchiroudD

2001 Determinants of CpG islands: expression in early embryo and isochore structure. Genome Res 11 1854 1860

20. Ramirez-CarrozziVR

BraasD

BhattDM

ChengCS

HongC

2009 A unifying model for the selective regulation of inducible transcription by CpG islands and nucleosome remodeling. Cell 138 114 128

21. TiroshI

BarkaiN

2008 Two strategies for gene regulation by promoter nucleosomes. Genome Res 18 1084 1091

22. NegreN

BrownCD

ShahPK

KheradpourP

MorrisonCA

2010 A comprehensive map of insulator elements for the Drosophila genome. PLoS Genet 6 e1000814doi:10.1371/journal.pgen.1000814

23. RachEA

YuanHY

MajorosWH

TomancakP

OhlerU

2009 Motif composition, conservation and condition-specificity of single and alternative transcription start sites in the Drosophila genome. Genome Biol 10 R73

24. DaveyC

PenningsS

AllanJ

1997 CpG methylation remodels chromatin structure in vitro. J Mol Biol 267 276 288

25. DaveyCS

PenningsS

ReillyC

MeehanRR

AllanJ

2004 A determining influence for CpG dinucleotides on nucleosome positioning in vitro. Nucleic Acids Res 32 4322 4331

26. KawajiH

SeverinJ

LizioM

WaterhouseA

KatayamaS

2009 The FANTOM web resource: from mammalian transcriptional landscape to its dynamic regulation. Genome Biol 10 R40

27. TolstorukovMY

KharchenkoPV

GoldmanJA

KingstonRE

ParkPJ

2009 Comparative analysis of H2A.Z nucleosome organization in the human and yeast genomes. Genome Res 19 967 977

28. BoyleAP

DavisS

ShulhaHP

MeltzerP

MarguliesEH

2008 High-resolution mapping and characterization of open chromatin across the genome. Cell 132 311 322

29. WangX

XuanZ

ZhaoX

LiY

ZhangMQ

2009 High-resolution human core-promoter prediction with CoreBoost_HM. Genome Res 19 266 275

30. TakaiD

JonesPA

2002 Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci U S A 99 3740 3745

31. WangZ

ZangC

RosenfeldJA

SchonesDE

BarskiA

2008 Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 40 897 903

32. SpiesN

NielsenCB

PadgettRA

BurgeCB

2009 Biased chromatin signatures around polyadenylation sites and exons. Mol Cell 36 245 254

33. MegrawM

PereiraF

JensenST

OhlerU

HatzigeorgiouAG

2009 A transcription factor affinity-based code for mammalian transcription initiation. Genome Res 19 644 656

34. KaplanN

MooreIK

Fondufe-MittendorfY

GossettAJ

TilloD

2009 The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458 362 366

35. AlbertI

MavrichTN

TomshoLP

QiJ

ZantonSJ

2007 Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature 446 572 576

36. ParryTJ

TheisenJW

HsuJY

WangYL

CorcoranDL

2010 The TCT motif, a key component of an RNA polymerase II transcription system for the translational machinery. Genes Dev 24 2013 2018

37. FitzGeraldPC

SturgillD

ShyakhtenkoA

OliverB

VinsonC

2006 Comparative genomics of Drosophila and human core promoters. Genome Biol 7 R53

38. ZeitlingerJ

StarkA

KellisM

HongJW

NechaevS

2007 RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo. Nat Genet 39 1512 1516

39. RahlPB

LinCY

SeilaAC

FlynnRA

McCuineS

2010 c-Myc regulates transcriptional pause release. Cell 141 432 445

40. SmithST

WickramasingheP

OlsonA

LoukinovD

LinL

2009 Genome wide ChIP-chip analyses reveal important roles for CTCF in Drosophila genome organization. Dev Biol 328 518 528

41. ChernukhinI

ShamsuddinS

KangSY

BergstromR

KwonYW

2007 CTCF interacts with and recruits the largest subunit of RNA polymerase II to CTCF target sites genome-wide. Mol Cell Biol 27 1631 1648

42. CelnikerSE

DillonLA

GersteinMB

GunsalusKC

HenikoffS

2009 Unlocking the secrets of the genome. Nature 459 927 930

43. MahmoudiT

KatsaniKR

VerrijzerCP

2002 GAGA can mediate enhancer function in trans by linking two separate DNA molecules. Embo J 21 1775 1781

44. LisJ

1998 Promoter-associated pausing in promoter architecture and postinitiation transcriptional regulation. Cold Spring Harb Symp Quant Biol 63 347 356

45. KratzA

ArnerE

SaitoR

KubosakiA

KawaiJ

2010 Core promoter structure and genomic context reflect histone 3 lysine 9 acetylation patterns. BMC Genomics 11 257

46. AdkinsNL

HagermanTA

GeorgelP

2006 GAGA protein: a multi-faceted transcription factor. Biochem Cell Biol 84 559 567

47. KatsaniKR

HajibagheriMA

VerrijzerCP

1999 Co-operative DNA binding by GAGA transcription factor requires the conserved BTB/POZ domain and reorganizes promoter topology. Embo J 18 698 708

48. HendrixDA

HongJW

ZeitlingerJ

RokhsarDS

LevineMS

2008 Promoter elements associated with RNA Pol II stalling in the Drosophila embryo. Proc Natl Acad Sci U S A 105 7762 7767

49. CairnsBR

2009 The logic of chromatin architecture and remodelling at promoters. Nature 461 193 198

50. ZhangY

MoqtaderiZ

RattnerBP

EuskirchenG

SnyderM

2009 Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo. Nat Struct Mol Biol 16 847 852

51. HenikoffS

AhmadK

2005 Assembly of variant histones into chromatin. Annu Rev Cell Dev Biol 21 133 153

52. MitoY

HenikoffJG

HenikoffS

2007 Histone replacement marks the boundaries of cis-regulatory domains. Science 315 1408 1411

53. TiroshI

BarkaiN

VerstrepenKJ

2009 Promoter architecture and the evolvability of gene expression. J Biol 8 95

54. BernsteinBE

MeissnerA

LanderES

2007 The mammalian epigenome. Cell 128 669 681

55. WilsonRJ

GoodmanJL

StreletsVB

Flybase Consortium 2008 FlyBase: integration and improvements to query tools. Nucleic Acids Research 36 D588 D592

56. ManakJR

DikeS

SementchenkoV

KapranovP

BiemarF

2006 Biological function of unannotated transcription during the early development of Drosophila melanogaster. Nat Genet 38 1151 1158

57. Gardiner-GardenM

FrommerM

1987 CpG islands in vertebrate genomes. J Mol Biol 196 261 282

58. Portales-CasamarE

ThongjueaS

KwonAT

ArenillasD

ZhaoX

2010 JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles. Nucleic Acids Res 38 D105 110

59. KohK

KimS-J

BoydS

2007 An interior-point method for large-scale L1-regularized ligistric regression. J Mach Learn Res 8 1519 1555

60. HochheimerA

ZhouS

ZhengS

HolmesMC

TjianR

2002 TRF2 associates with DREF and directs promoter-selective gene expression in Drosophila. Nature 420 439 445

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2011 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#