#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Horizontal Transfer, Not Duplication, Drives the Expansion of Protein Families in Prokaryotes


Gene duplication followed by neo- or sub-functionalization deeply impacts the evolution of protein families and is regarded as the main source of adaptive functional novelty in eukaryotes. While there is ample evidence of adaptive gene duplication in prokaryotes, it is not clear whether duplication outweighs the contribution of horizontal gene transfer in the expansion of protein families. We analyzed closely related prokaryote strains or species with small genomes (Helicobacter, Neisseria, Streptococcus, Sulfolobus), average-sized genomes (Bacillus, Enterobacteriaceae), and large genomes (Pseudomonas, Bradyrhizobiaceae) to untangle the effects of duplication and horizontal transfer. After removing the effects of transposable elements and phages, we show that the vast majority of expansions of protein families are due to transfer, even among large genomes. Transferred genes—xenologs—persist longer in prokaryotic lineages possibly due to a higher/longer adaptive role. On the other hand, duplicated genes—paralogs—are expressed more, and, when persistent, they evolve slower. This suggests that gene transfer and gene duplication have very different roles in shaping the evolution of biological systems: transfer allows the acquisition of new functions and duplication leads to higher gene dosage. Accordingly, we show that paralogs share most protein–protein interactions and genetic regulators, whereas xenologs share very few of them. Prokaryotes invented most of life's biochemical diversity. Therefore, the study of the evolution of biology systems should explicitly account for the predominant role of horizontal gene transfer in the diversification of protein families.


Vyšlo v časopise: Horizontal Transfer, Not Duplication, Drives the Expansion of Protein Families in Prokaryotes. PLoS Genet 7(1): e32767. doi:10.1371/journal.pgen.1001284
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001284

Souhrn

Gene duplication followed by neo- or sub-functionalization deeply impacts the evolution of protein families and is regarded as the main source of adaptive functional novelty in eukaryotes. While there is ample evidence of adaptive gene duplication in prokaryotes, it is not clear whether duplication outweighs the contribution of horizontal gene transfer in the expansion of protein families. We analyzed closely related prokaryote strains or species with small genomes (Helicobacter, Neisseria, Streptococcus, Sulfolobus), average-sized genomes (Bacillus, Enterobacteriaceae), and large genomes (Pseudomonas, Bradyrhizobiaceae) to untangle the effects of duplication and horizontal transfer. After removing the effects of transposable elements and phages, we show that the vast majority of expansions of protein families are due to transfer, even among large genomes. Transferred genes—xenologs—persist longer in prokaryotic lineages possibly due to a higher/longer adaptive role. On the other hand, duplicated genes—paralogs—are expressed more, and, when persistent, they evolve slower. This suggests that gene transfer and gene duplication have very different roles in shaping the evolution of biological systems: transfer allows the acquisition of new functions and duplication leads to higher gene dosage. Accordingly, we show that paralogs share most protein–protein interactions and genetic regulators, whereas xenologs share very few of them. Prokaryotes invented most of life's biochemical diversity. Therefore, the study of the evolution of biology systems should explicitly account for the predominant role of horizontal gene transfer in the diversification of protein families.


Zdroje

1. McCutcheonJP

McDonaldBR

MoranNA

2009

Origin of an alternative genetic code in the extremely small and GC-rich genome of a bacterial symbiont.

PLoS Genet

5

e1000565

doi:10.1371/journal.pgen.1000565

2. SchneikerS

PerlovaO

KaiserO

GerthK

AliciA

2007

Complete genome sequence of the myxobacterium Sorangium cellulosum.

Nat Biotechnol

25

1281

1289

3. PasekS

RislerJL

BrezellecP

2006

The role of domain redundancy in genetic robustness against null mutations.

J Mol Biol

362

184

191

4. Pereira-LealJB

LevyED

KampC

TeichmannSA

2007

Evolution of protein complexes by duplication of homomeric interactions.

Genome Biol

8

R51

5. WagnerA

2008

Gene duplications, robustness and evolutionary innovations.

Bioessays

30

367

373

6. FrancinoMP

2005

An adaptive radiation model for the origin of new gene functions.

Nat Genet

37

573

577

7. KugelbergE

KofoidE

ReamsAB

AnderssonDI

RothJR

2006

Multiple pathways of selected gene amplification during adaptive mutation.

Proc Natl Acad Sci U S A

103

17319

17324

8. AnderssonDI

HughesD

2009

Gene amplification and adaptive evolution in bacteria.

Annu Rev Genet

43

167

195

9. ConantGC

WolfeKH

2008

Turning a hobby into a job: how duplicated genes find new functions.

Nat Rev Genet

9

938

950

10. RothC

RastogiS

ArvestadL

DittmarK

LightS

2007

Evolution after gene duplication: models, mechanisms, sequences, systems, and organisms.

J Exp Zoolog B Mol Dev Evol

308

58

73

11. DemuthJP

HahnMW

2009

The life and death of gene families.

Bioessays

31

29

39

12. InnanH

KondrashovF

2010

The evolution of gene duplications: classifying and distinguishing between models.

Nat Rev Genet

11

97

108

13. AlmE

HuangK

ArkinA

2006

The evolution of two-component systems in bacteria reveals different strategies for niche adaptation.

PLoS Comput Biol

2

e143

doi:10.1371/journal.pcbi.0020143

14. SerresMH

KerrAR

McCormackTJ

RileyM

2009

Evolution by leaps: gene duplication in bacteria.

Biol Direct

4

46

15. TreangenTJ

AbrahamAL

TouchonM

RochaEP

2009

Genesis, effects and fates of repeats in prokaryotic genomes.

FEMS Microbiol Rev

33

539

571

16. ChoNH

KimHR

LeeJH

KimSY

KimJ

2007

The Orientia tsutsugamushi genome reveals massive proliferation of conjugative type IV secretion system and host-cell interaction genes.

Proc Natl Acad Sci U S A

104

7981

7986

17. GoldmanBS

NiermanWC

KaiserD

SlaterSC

DurkinAS

2006

Evolution of sensory complexity recorded in a myxobacterial genome.

Proc Natl Acad Sci U S A

103

15200

15205

18. McLeodMP

WarrenRL

HsiaoWW

ArakiN

MyhreM

2006

The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse.

Proc Natl Acad Sci U S A

103

15582

15587

19. LindroosH

VinnereO

MiraA

RepsilberD

NaslundK

2006

Genome rearrangements, deletions, and amplifications in the natural population of Bartonella henselae.

J Bacteriol

188

7426

7439

20. EvlampievK

IsambertH

2008

Conservation and topology of protein interaction networks under duplication-divergence evolution.

Proc Natl Acad Sci U S A

105

9863

9868

21. TeichmannSA

BabuMM

2004

Gene regulatory network growth by duplication.

Nat Genet

36

492

496

22. OchmanH

LawrenceJG

GroismanEA

2000

Lateral gene transfer and the nature of bacterial innovation.

Nature

405

299

304

23. LeratE

DaubinV

OchmanH

MoranNA

2005

Evolutionary origins of genomic repertoires in bacteria.

PLoS Biol

3

e130

doi:10.1371/journal.pbio.0030130

24. GogartenJP

DoolittleWF

LawrenceJG

2002

Prokaryotic evolution in light of gene transfer.

Mol Biol Evol

19

2226

2238

25. TettelinH

RileyD

CattutoC

MediniD

2008

Comparative genomics: the bacterial pan-genome.

Curr Opin Microbiol

11

472

477

26. KuninV

OuzounisCA

2003

The balance of driving forces during genome evolution in prokaryotes.

Genome Res

13

1589

1594

27. ZhaxybayevaO

GogartenJP

CharleboisRL

DoolittleWF

PapkeRT

2006

Phylogenetic analyses of cyanobacterial genomes: quantification of horizontal gene transfer events.

Genome Res

16

1099

1108

28. DaganT

Artzy-RandrupY

MartinW

2008

Modular networks and cumulative impact of lateral transfer in prokaryote genome evolution.

Proc Natl Acad Sci U S A

105

10039

10044

29. SnelB

BorkP

HuynenMA

2002

Genomes in flux: the evolution of archaeal and proteobacterial gene content.

Genome Res

12

17

25

30. HooperSD

BergOG

2003

Duplication is more common among laterally transferred genes than among indigenous genes.

Genome Biol

4

R48

31. GeversD

VandepoeleK

SimillonC

Van de PeerY

2004

Gene duplication and biased functional retention of paralogs in bacterial genomes.

Trends Microbiol

12

148

154

32. PushkerR

MiraA

Rodriguez-ValeraF

2004

Comparative genomics of gene-family size in closely related bacteria.

Genome Biol

5

R27

33. PagelM

MeadeA

BarkerD

2004

Bayesian estimation of ancestral character states on phylogenies.

Syst Biol

53

673

684

34. WagnerA

2006

Periodic extinctions of transposable elements in bacterial lineages: evidence from intragenomic variation in multiple genomes.

Mol Biol Evol

23

723

733

35. TouchonM

RochaEP

2007

Causes of insertion sequences abundance in prokaryotic genomes.

Mol Biol Evol

24

969

981

36. van PasselMW

MarriPR

OchmanH

2008

The emergence and fate of horizontally acquired genes in Escherichia coli.

PLoS Comput Biol

4

e1000059

doi:10.1371/journal.pcbi.1000059

37. RochaEP

2008

Evolutionary patterns in prokaryotic genomes.

Curr Opin Microbiol

11

454

460

38. RomeroD

PalaciosR

1997

Gene amplification and genomic plasticity in prokaryotes.

Annu Rev Genet

31

91

111

39. AchazG

RochaEPC

NetterP

CoissacE

2002

Origin and fate of repeats in bacteria.

Nucleic Acids Res

30

2987

2994

40. Howell-AdamsB

SeifertHS

2000

Molecular models accounting for the gene conversion reactions mediating gonococcal pilin antigenic variation.

Mol Microbiol

37

1146

1158

41. ArasRA

KangJ

TschumiAI

HarasakiY

BlaserMJ

2003

Extensive repetitive DNA facilitates prokaryotic genome plasticity.

Proc Natl Acad Sci U S A

100

13579

13584

42. FalushD

KraftC

TaylorNS

CorreaP

FoxJG

2001

Recombination and mutation during long-term gastric colonization by Helicobacter pylori: estimates of clock rates, recombination size, and minimal age.

Proc Natl Acad Sci U S A

98

15056

15061

43. FeilEJ

HolmesEC

BessenDE

ChanMS

DayNP

2001

Recombination within natural populations of pathogenic bacteria: short- term empirical estimates and long-term phylogenetic consequences.

Proc Natl Acad Sci U S A

98

182

187

44. SharpPM

LiWH

1987

The codon Adaptation Index - a measure of directional synonymous codon usage bias, and its potential applications.

Nucleic Acids Res

15

1281

1295

45. MasudaT

SaitoN

TomitaM

IshihamaY

2009

Unbiased quantitation of Escherichia coli membrane proteome using phase transfer surfactants.

Mol Cell Proteomics

8

2770

2777

46. ParmleyJL

HurstLD

2007

How common are intragene windows with KA>KS owing to purifying selection on synonymous mutations?

J Mol Evol

64

646

655

47. LawrenceJG

OchmanH

1997

Amelioration of bacterial genomes: rates of change and exchange.

J Mol Evol

44

383

397

48. VernikosGS

ThomsonNR

ParkhillJ

2007

Genetic flux over time in the Salmonella lineage.

Genome Biol

8

R100

49. RochaEPC

DanchinA

2004

An analysis of determinants of protein substitution rates in Bacteria.

Mol Biol Evol

21

108

116

50. HuP

JangaSC

BabuM

Diaz-MejiaJJ

ButlandG

2009

Global functional atlas of Escherichia coli encompassing previously uncharacterized proteins.

PLoS Biol

7

e96

doi:10.1371/journal.pbio.1000096

51. Martinez-NunezMA

Perez-RuedaE

Gutierrez-RiosRM

MerinoE

2010

New insights into the regulatory networks of paralogous genes in bacteria.

Microbiology

156

14

22

52. PriceMN

DehalPS

ArkinAP

2008

Horizontal gene transfer and the evolution of transcriptional regulation in Escherichia coli.

Genome Biol

9

R4

53. LercherMJ

PalC

2008

Integration of horizontally transferred genes into regulatory interaction networks takes many million years.

Mol Biol Evol

25

559

567

54. CorderoOX

HogewegP

2009

The impact of long-distance horizontal gene transfer on prokaryotic genome size.

Proc Natl Acad Sci U S A

106

21748

21753

55. SorekR

ZhuY

CreeveyCJ

FrancinoMP

BorkP

2007

Genome-wide experimental determination of barriers to horizontal gene transfer.

Science

318

1449

1452

56. VernikosG

ThomsonN

ParkhillJ

2007

Genetic flux over time in the Salmonella lineage.

Genome Biology

8

R100

57. IsambertH

SteinRR

2009

On the need for widespread horizontal gene transfers under genome size constraint.

Biol Direct

4

28

58. RochaEPC

2006

Inference and Analysis of the Relative Stability of Bacterial Chromosomes.

Mol Biol Evol

23

513

522

59. PalC

PappB

LercherMJ

2005

Adaptive evolution of bacterial metabolic networks by horizontal gene transfer.

Nat Genet

37

1372

1375

60. OchmanH

LiuR

RochaEP

2007

Erosion of interaction networks in reduced and degraded genomes.

J Exp Zoolog B Mol Dev Evol

308

97

103

61. WellnerA

LurieMN

GophnaU

2007

Complexity, connectivity, and duplicability as barriers to lateral gene transfer.

Genome Biol

8

R156

62. KeelingPJ

PalmerJD

2008

Horizontal gene transfer in eukaryotic evolution.

Nat Rev Genet

9

605

618

63. DerelleE

FerrazC

RombautsS

RouzeP

WordenAZ

2006

Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features.

Proc Natl Acad Sci U S A

103

11647

11652

64. BowlerC

AllenAE

BadgerJH

GrimwoodJ

JabbariK

2008

The Phaeodactylum genome reveals the evolutionary history of diatom genomes.

Nature

456

239

244

65. AltschulSF

GishW

MillerW

MyersEW

LipmanDJ

1990

Basic local alignment search tool.

J Mol Biol

215

403

410

66. EnrightAJ

Van DongenS

OuzounisCA

2002

An efficient algorithm for large-scale detection of protein families.

Nucleic Acids Res

30

1575

1584

67. SiguierP

PerochonJ

LestradeL

MahillonJ

ChandlerM

2006

ISfinder: the reference centre for bacterial insertion sequences.

Nucleic Acids Res

34

D32

36

68. FoutsDE

2006

Phage_Finder: automated identification and classification of prophage regions in complete bacterial genome sequences.

Nucleic Acids Res

34

5839

5851

69. TreangenTJ

DarlingAE

AchazG

RaganMA

MesseguerX

2009

A novel heuristic for local multiple alignment of interspersed DNA repeats.

IEEE/ACM Trans Comput Biol BioInf

6

180

189

70. LiL

StoeckertCJJr

RoosDS

2003

OrthoMCL: identification of ortholog groups for eukaryotic genomes.

Genome Res

13

2178

2189

71. RochaEP

TouchonM

FeilEJ

2006

Similar compositional biases are caused by very different mutational effects.

Genome Res

16

1537

1547

72. AzadRK

LawrenceJG

2007

Detecting laterally transferred genes: use of entropic clustering methods and genome position.

Nucleic Acids Res

35

4629

4639

73. EdgarRC

2004

MUSCLE: multiple sequence alignment with high accuracy and high throughput.

Nucleic Acids Res

32

1792

1797

74. SchmidtHA

StrimmerK

VingronM

von HaeselerA

2002

TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing.

Bioinformatics

18

502

504

75. GascuelO

1997

BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data.

Mol Biol Evol

14

685

695

76. YangZ

1997

PAML: a program package for phylogenetic analysis by maximum likelihood.

CABIOS

13

555

556

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2011 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#