A Cholinergic-Regulated Circuit Coordinates the Maintenance and Bi-Stable States of a Sensory-Motor Behavior during Male Copulation
Penetration of a male copulatory organ into a suitable mate is a conserved and necessary behavioral step for most terrestrial matings; however, the detailed molecular and cellular mechanisms for this distinct social interaction have not been elucidated in any animal. During mating, the Caenorhabditis elegans male cloaca is maintained over the hermaphrodite's vulva as he attempts to insert his copulatory spicules. Rhythmic spicule thrusts cease when insertion is sensed. Circuit components consisting of sensory/motor neurons and sex muscles for these steps have been previously identified, but it was unclear how their outputs are integrated to generate a coordinated behavior pattern. Here, we show that cholinergic signaling between the cloacal sensory/motor neurons and the posterior sex muscles sustains genital contact between the sexes. Simultaneously, via gap junctions, signaling from these muscles is transmitted to the spicule muscles, thus coupling repeated spicule thrusts with vulval contact. To transit from rhythmic to sustained muscle contraction during penetration, the SPC sensory-motor neurons integrate the signal of spicule's position in the vulva with inputs from the hook and cloacal sensilla. The UNC-103 K+ channel maintains a high excitability threshold in the circuit, so that sustained spicule muscle contraction is not stimulated by fewer inputs. We demonstrate that coordination of sensory inputs and motor outputs used to initiate, maintain, self-monitor, and complete an innate behavior is accomplished via the coupling of a few circuit components.
Vyšlo v časopise:
A Cholinergic-Regulated Circuit Coordinates the Maintenance and Bi-Stable States of a Sensory-Motor Behavior during Male Copulation. PLoS Genet 7(3): e32767. doi:10.1371/journal.pgen.1001326
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1001326
Souhrn
Penetration of a male copulatory organ into a suitable mate is a conserved and necessary behavioral step for most terrestrial matings; however, the detailed molecular and cellular mechanisms for this distinct social interaction have not been elucidated in any animal. During mating, the Caenorhabditis elegans male cloaca is maintained over the hermaphrodite's vulva as he attempts to insert his copulatory spicules. Rhythmic spicule thrusts cease when insertion is sensed. Circuit components consisting of sensory/motor neurons and sex muscles for these steps have been previously identified, but it was unclear how their outputs are integrated to generate a coordinated behavior pattern. Here, we show that cholinergic signaling between the cloacal sensory/motor neurons and the posterior sex muscles sustains genital contact between the sexes. Simultaneously, via gap junctions, signaling from these muscles is transmitted to the spicule muscles, thus coupling repeated spicule thrusts with vulval contact. To transit from rhythmic to sustained muscle contraction during penetration, the SPC sensory-motor neurons integrate the signal of spicule's position in the vulva with inputs from the hook and cloacal sensilla. The UNC-103 K+ channel maintains a high excitability threshold in the circuit, so that sustained spicule muscle contraction is not stimulated by fewer inputs. We demonstrate that coordination of sensory inputs and motor outputs used to initiate, maintain, self-monitor, and complete an innate behavior is accomplished via the coupling of a few circuit components.
Zdroje
1. EmmonsSW
LiptonJ
2003 Genetic basis of male sexual behavior. J Neurobiol 54 93 110
2. LiuKS
SternbergPW
1995 Sensory regulation of male mating behavior in Caenorhabditis elegans. Neuron 14 79 89
3. de BonoM
MaricqAV
2005 Neuronal substrates of complex behaviors in C. elegans. Annu Rev Neurosci 28 451 501
4. LiptonJ
KleemannG
GhoshR
LintsR
EmmonsSW
2004 Mate searching in Caenorhabditis elegans: a genetic model for sex drive in a simple invertebrate. J Neurosci 24 7427 7434
5. GruningerTR
GualbertoDG
GarciaLR
2008 Sensory perception of food and insulin-like signals influence seizure susceptibility. PLoS Genet 4 e1000117 doi:10.1371/journal.pgen.1000117
6. GruningerTR
GualbertoDG
LeBoeufB
GarciaLR
2006 Integration of male mating and feeding behaviors in Caenorhabditis elegans. J Neurosci 26 169 179
7. LeeK
PortmanDS
2007 Neural sex modifies the function of a C. elegans sensory circuit. Curr Biol 17 1858 1863
8. SenguptaP
SamuelAD
2009 Caenorhabditis elegans: a model system for systems neuroscience. Curr Opin Neurobiol 19 637 643
9. SokolowskiMB
2010 Social interactions in “simple” model systems. Neuron 65 780 794
10. BarrMM
GarciaLR
2006 Male mating behavior WormBook, ed The C elegans Research Community, WormBook, doi/101895/wormbook1781 http://wwwwormbookorg
11. SchaferWF
2006 Genetics of egg-laying in worms. Annu Rev Genet 40 487 509
12. BranickyR
HekimiS
2006 What keeps C. elegans regular: the genetics of defecation. Trends Genet 22 571 579
13. RankinCH
2006 Nematode behavior: the taste of success, the smell of danger! Curr Biol 16 R89 91
14. BargmannCI
2006 Chemosensation in C. elegans WormBook, ed The C elegans Research Community, WormBook, doi/101895/wormbook11231, http://wwwwormbookorg
15. GoodmanMB
2006 Mechanosensation WormBook, ed The C elegans Research Community, WormBook, http://wwwwormbookorg January 06
16. MoriI
SasakuraH
KuharaA
2007 Worm thermotaxis: a model system for analyzing thermosensation and neural plasticity. Curr Opin Neurobiol 17 712 719
17. ZhangM
ChungSH
Fang-YenC
CraigC
KerrRA
2008 A self-regulating feed-forward circuit controlling C. elegans egg-laying behavior. Curr Biol 18 1445 1455
18. BarrMM
SternbergPW
1999 A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans. Nature 401 386 389
19. LiuT
KimK
LiC
BarrM
2007 FMRFamide-like neuropeptides and mechanosensory touch receptor neurons regulate male sexual turning behavior in Caenorhabditis elegans. J Neurosci 27 7174 7182
20. SchindelmanG
WhittakerAJ
ThumJY
GharibS
SternbergPW
2006 Initiation of male sperm-transfer behavior in Caenorhabditis elegans requires input from the ventral nerve cord. BMC Biol 4 26
21. WhittakerA
SternbergP
2009 Coordination of opposing sex-specific and core muscle groups regulates male tail posture during Caenorhabditis elegans male mating behavior. BMC Biol 7 33
22. GarciaLR
MehtaP
SternbergPW
2001 Regulation of distinct muscle behaviors controls the C. elegans male's copulatory spicules during mating. Cell 107 777 788
23. KleemannGA
BasoloAL
2007 Facultative decrease in mating resistance in hermaphroditic Caenorhabditis elegans with self-sperm depletion. Animal Behaviour 74 1337 1347
24. GarciaLR
LeBoeufB
KooP
2007 Diversity in mating behavior of hermaphroditic and male-female Caenorhabditis nematodes. Genetics 175 1761 1771
25. SulstonJE
AlbertsonDG
ThomsonJN
1980 The Caenorhabditis elegans male: postembryonic development of nongonadal structures. Dev Biol 78 542 576
26. LiuY
LeBoeufB
GarciaLR
2007 G alpha(q)-coupled muscarinic acetylcholine receptors enhance nicotinic acetylcholine receptor signaling in Caenorhabditis elegans mating behavior. J Neurosci 27 1411 1421
27. FlemingJT
SquireMD
BarnesTM
TornoeC
MatsudaK
1997 Caenorhabditis elegans levamisole resistance genes lev-1, unc-29, and unc-38 encode functional nicotinic acetylcholine receptor subunits. J Neurosci 17 5843 5857
28. RayesD
FlaminiM
HernandoG
BouzatC
2007 Activation of single nicotinic receptor channels from Caenorhabditis elegans muscle. Mol Pharmacol 71 1407 1415
29. RichmondJE
JorgensenEM
1999 One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction. Nat Neurosci 2 791 797
30. BallivetM
AlliodC
BertrandS
BertrandD
1996 Nicotinic acetylcholine receptors in the nematode Caenorhabditis elegans. J Mol Biol 258 261 269
31. LewisJA
WuCH
BergH
LevineJH
1980 The genetics of levamisole resistance in the nematode Caenorhabditis elegans. Genetics 95 905 928
32. KimJ
PooleDS
WaggonerLE
KempfA
RamirezDS
2001 Genes affecting the activity of nicotinic receptors involved in Caenorhabditis elegans egg-laying behavior. Genetics 157 1599 1610
33. LewisJA
WuCH
LevineJH
BergH
1980 Levamisole-resistant mutants of the nematode Caenorhabditis elegans appear to lack pharmacological acetylcholine receptors. Neuroscience 5 967 989
34. LeBoeufB
GruningerTR
GarciaLR
2007 Food deprivation attenuates seizures through CaMKII and EAG K+ channels. PLoS Genet 3 e156 doi:10.1371/journal.pgen.0030156
35. TouroutineD
FoxRM
Von StetinaSE
BurdinaA
MillerDM3rd
2005 acr-16 encodes an essential subunit of the levamisole-resistant nicotinic receptor at the Caenorhabditis elegans neuromuscular junction. J Biol Chem 280 27013 27021
36. JospinM
QiYB
StawickiTM
BoulinT
SchuskeKR
2009 A neuronal acetylcholine receptor regulates the balance of muscle excitation and inhibition in Caenorhabditis elegans. PLoS Biol 7 e1000265 doi:10.1371/journal.pbio.1000265
37. LintsR
HallDH
2009 Male muscle system, male-specific muscles. In WormAtlas doi:103908/wormatlas25
38. GowerNJ
WalkerDS
BaylisHA
2005 Inositol 1,4,5-trisphosphate signaling regulates mating behavior in Caenorhabditis elegans males. Mol Biol Cell 16 3978 3986
39. BennettMV
ZukinRS
2004 Electrical coupling and neuronal synchronization in the Mammalian brain. Neuron 41 495 511
40. BennettMV
BarrioLC
BargielloTA
SprayDC
HertzbergE
1991 Gap junctions: new tools, new answers, new questions. Neuron 6 305 320
41. NagelG
BraunerM
LiewaldJF
AdeishviliN
BambergE
2005 Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 15 2279 2284
42. NagelG
SzellasT
HuhnW
KateriyaS
AdeishviliN
2003 Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100 13940 13945
43. NakaiJ
OhkuraM
ImotoK
2001 A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein. Nat Biotechnol 19 137 141
44. ReinerDJ
WeinshenkerD
TianH
ThomasJH
NishiwakiK
2006 Behavioral genetics of caenorhabditis elegans unc-103-encoded erg-like K(+) channel. J Neurogenet 20 41 66
45. MatzMV
FradkovAF
LabasYA
SavitskyAP
ZaraiskyAG
1999 Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17 969 973
46. BairdGS
ZachariasDA
TsienRY
2000 Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci U S A 97 11984 11989
47. ZhangF
PriggeM
BeyriereF
TsunodaSP
MattisJ
2008 Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat Neurosci 11 631 633
48. ReinerDJ
WeinshenkerD
ThomasJH
1995 Analysis of dominant mutations affecting muscle excitation in Caenorhabditis elegans. Genetics 141 961 976
49. PetersMA
TeramotoT
WhiteJQ
IwasakiK
JorgensenEM
2007 A calcium wave mediated by gap junctions coordinates a rhythmic behavior in C. elegans. Curr Biol 17 1601 1608
50. DavidsonJS
BaumgartenIM
1988 Glycyrrhetinic acid derivatives: a novel class of inhibitors of gap-junctional intercellular communication. Structure-activity relationships. J Pharmacol Exp Ther 246 1104 1107
51. SchneiderNL
StenglM
2006 Gap junctions between accessory medulla neurons appear to synchronize circadian clock cells of the cockroach Leucophaea maderae. J Neurophysiol 95 1996 2002
52. BaoL
SamuelsS
LocoveiS
MacagnoER
MullerKJ
2007 Innexins form two types of channels. FEBS Lett 581 5703 5708
53. RaizenDM
LeeRY
AveryL
1995 Interacting genes required for pharyngeal excitation by motor neuron MC in Caenorhabditis elegans. Genetics 141 1365 1382
54. SattelleDB
CulettoE
GrausoM
RaymondV
FranksCJ
2002 Functional genomics of ionotropic acetylcholine receptors in Caenorhabditis elegans and Drosophila melanogaster. Novartis Found Symp 245 240 257; discussion 257-260, 261-244
55. AltunZF
ChenB
WangZW
HallDH
2009 High resolution map of Caenorhabditis elegans gap junction proteins. Dev Dyn 238 1936 1950
56. StarichT
SheehanM
JadrichJ
ShawJ
2001 Innexins in C. elegans. Cell Commun Adhes 8 311 314
57. SulstonJE
HorvitzHR
1977 Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 56 110 156
58. BrennerS
1974 The genetics of Caenorhabditis elegans. Genetics 77 71 94
59. LiuQ
ChenB
GaierE
JoshiJ
WangZW
2006 Low conductance gap junctions mediate specific electrical coupling in body-wall muscle cells of Caenorhabditis elegans. J Biol Chem 281 7881 7889
60. GarciaLR
SternbergPW
2003 Caenorhabditis elegans UNC-103 ERG-like potassium channel regulates contractile behaviors of sex muscles in males before and during mating. J Neurosci 23 2696 2705
61. FranksCJ
MurrayC
OgdenD
O'ConnorV
Holden-DyeL
2009 A comparison of electrically evoked and channel rhodopsin-evoked postsynaptic potentials in the pharyngeal system of Caenorhabditis elegans. Invert Neurosci 9 43 56
62. BaierH
ScottEK
2009 Genetic and optical targeting of neural circuits and behavior—zebrafish in the spotlight. Curr Opin Neurobiol 19 553 560
63. GuoZV
HartAC
RamanathanS
2009 Optical interrogation of neural circuits in Caenorhabditis elegans. Nat Methods 6 891 896
64. SchroederCE
WilsonDA
RadmanT
ScharfmanH
LakatosP
2010 Dynamics of Active Sensing and perceptual selection. Curr Opin Neurobiol 20 172 176
65. CroninCJ
MendelJE
MukhtarS
KimYM
StirblRC
2005 An automated system for measuring parameters of nematode sinusoidal movement. BMC Genet 6 5
66. ShadmehrR
SmithMA
KrakauerJW
2010 Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci 33 89 108
67. YuH
PretotR
BurglinT
SternbergP
2003 Distinct roles of transcription factors EGL-46 and DAF-19 in specifying the functionality of a polycystin-expressing sensory neuron necessary for C. elegans male vulva location behavior. Development 130 5217 5227
68. PedenE
BarrM
2005 The KLP-6 kinesin is required for male mating behaviors and polycystin localization in Caenorhabditis elegans. Curr Biol 15 394 404
69. JaureguiA
BarrM
2005 Functional characterization of the C. elegans nephrocystins NPHP-1 and NPHP-4 and their role in cilia and male sensory behaviors. Exp Cell Res 305 333 342
70. BaeY-K
Lyman-GingerichJ
BarrM
KnobelK
2008 Identification of genes involved in the ciliary trafficking of C. elegans PKD-2. Developmental Dynamics 237 2021 2029
71. WhiteJG
SouthgateE
ThomsonJN
BrennerS
1986 The Structure of the Nervous System of the Nematode Caenorhabditis elegans. Phil Trans Royal Soc London Series B, Biol Scien 314 1 340
72. MacoskoEZ
PokalaN
FeinbergEH
ChalasaniSH
ButcherRA
2009 A hub-and-spoke circuit drives pheromone attraction and social behaviour in C. elegans. Nature 458 1171 1175
73. ChenB
LiuQ
GeQ
XieJ
WangZW
2007 UNC-1 regulates gap junctions important to locomotion in C. elegans. Curr Biol 17 1334 1339
74. WagenaarDA
HamiltonMS
HuangT
KristanWB
FrenchKA
2010 A hormone-activated central pattern generator for courtship. Curr Biol 20 487 495
75. GrillnerS
WallenP
SaitohK
KozlovA
RobertsonB
2008 Neural bases of goal-directed locomotion in vertebrates—an overview. Brain Res Rev 57 2 12
76. GrillnerS
JessellTM
2009 Measured motion: searching for simplicity in spinal locomotor networks. Curr Opin Neurobiol 19 572 586
77. NisenbaumES
WilsonCJ
1995 Potassium currents responsible for inward and outward rectification in rat neostriatal spiny projection neurons. J Neurosci 15 4449 4463
78. KreitzerAC
MalenkaRC
2008 Striatal plasticity and basal ganglia circuit function. Neuron 60 543 554
79. MermelsteinPG
SongWJ
TkatchT
YanZ
SurmeierDJ
1998 Inwardly rectifying potassium (IRK) currents are correlated with IRK subunit expression in rat nucleus accumbens medium spiny neurons. J Neurosci 18 6650 6661
80. WilsonCJ
KawaguchiY
1996 The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J Neurosci 16 2397 2410
81. GrillnerS
HellgrenJ
MenardA
SaitohK
WikstromMA
2005 Mechanisms for selection of basic motor programs—roles for the striatum and pallidum. Trends Neurosci 28 364 370
82. HodgkinJA
HorvitzHR
BrennerS
1979 Nondisjunction mutants of the nematode Caenorhabditis elegans. Genetics 91 67 94
83. ParkEC
HorvitzHR
1986 Mutations with dominant effects on the behavior and morphology of the nematode Caenorhabditis elegans. Genetics 113 821 852
84. SchnabelH
SchnabelR
1990 An Organ-Specific Differentiation Gene, pha-1, from Caenorhabditis elegans. Science 250 686 688
85. EdwardsS
CharlieN
MilfortM
BrownB
GravlinC
2008 A novel molecular solution for ultraviolet light detection in Caenorhabditis elegans. PLoS Biol 6 e198 doi:10.1371/journal.pbio.0060198
86. BargmannCI
AveryL
1995 Laser killing of cells in Caenorhabditis elegans. Methods Cell Biol 48 225 250
87. Fang-YenC
WassermanS
SenguptaP
SamuelAD
2009 Agarose immobilization of C. elegans. Worm Breeder's Gazette 18 32
88. RualJF
CeronJ
KorethJ
HaoT
NicotAS
2004 Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library. Genome Res 14 2162 2168
89. KamathRS
Martinez-CamposM
ZipperlenP
FraserAG
AhringerJ
2001 Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol 2 RESEARCH0002
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2011 Číslo 3
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Whole-Exome Re-Sequencing in a Family Quartet Identifies Mutations As the Cause of a Novel Skeletal Dysplasia
- Origin-Dependent Inverted-Repeat Amplification: A Replication-Based Model for Generating Palindromic Amplicons
- FUS Transgenic Rats Develop the Phenotypes of Amyotrophic Lateral Sclerosis and Frontotemporal Lobar Degeneration
- Limited dCTP Availability Accounts for Mitochondrial DNA Depletion in Mitochondrial Neurogastrointestinal Encephalomyopathy (MNGIE)