Role of the Drosophila Non-Visual ß-Arrestin Kurtz in Hedgehog Signalling
The non-visual ß-arrestins are cytosolic proteins highly conserved across species that participate in a variety of signalling events, including plasma membrane receptor degradation, recycling, and signalling, and that can also act as scaffolding for kinases such as MAPK and Akt/PI3K. In Drosophila melanogaster, there is only a single non-visual ß-arrestin, encoded by kurtz, whose function is essential for neuronal activity. We have addressed the participation of Kurtz in signalling during the development of the imaginal discs, epithelial tissues requiring the activity of the Hedgehog, Wingless, EGFR, Notch, Insulin, and TGFβ pathways. Surprisingly, we found that the complete elimination of kurtz by genetic techniques has no major consequences in imaginal cells. In contrast, the over-expression of Kurtz in the wing disc causes a phenotype identical to the loss of Hedgehog signalling and prevents the expression of Hedgehog targets in the corresponding wing discs. The mechanism by which Kurtz antagonises Hedgehog signalling is to promote Smoothened internalization and degradation in a clathrin- and proteosomal-dependent manner. Intriguingly, the effects of Kurtz on Smoothened are independent of Gprk2 activity and of the activation state of the receptor. Our results suggest fundamental differences in the molecular mechanisms regulating receptor turnover and signalling in vertebrates and invertebrates, and they could provide important insights into divergent evolution of Hedgehog signalling in these organisms.
Vyšlo v časopise:
Role of the Drosophila Non-Visual ß-Arrestin Kurtz in Hedgehog Signalling. PLoS Genet 7(3): e32767. doi:10.1371/journal.pgen.1001335
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1001335
Souhrn
The non-visual ß-arrestins are cytosolic proteins highly conserved across species that participate in a variety of signalling events, including plasma membrane receptor degradation, recycling, and signalling, and that can also act as scaffolding for kinases such as MAPK and Akt/PI3K. In Drosophila melanogaster, there is only a single non-visual ß-arrestin, encoded by kurtz, whose function is essential for neuronal activity. We have addressed the participation of Kurtz in signalling during the development of the imaginal discs, epithelial tissues requiring the activity of the Hedgehog, Wingless, EGFR, Notch, Insulin, and TGFβ pathways. Surprisingly, we found that the complete elimination of kurtz by genetic techniques has no major consequences in imaginal cells. In contrast, the over-expression of Kurtz in the wing disc causes a phenotype identical to the loss of Hedgehog signalling and prevents the expression of Hedgehog targets in the corresponding wing discs. The mechanism by which Kurtz antagonises Hedgehog signalling is to promote Smoothened internalization and degradation in a clathrin- and proteosomal-dependent manner. Intriguingly, the effects of Kurtz on Smoothened are independent of Gprk2 activity and of the activation state of the receptor. Our results suggest fundamental differences in the molecular mechanisms regulating receptor turnover and signalling in vertebrates and invertebrates, and they could provide important insights into divergent evolution of Hedgehog signalling in these organisms.
Zdroje
1. RosenbaumDM
RasmussenSG
KobilkaBK
2009 The structure and function of G-protein-coupled receptors. Nature 459 356 363
2. PremontRT
GainetdinovRR
2007 Physiological roles of G protein-coupled receptor kinases and arrestins. Annu Rew Physiol 69 511 534
3. GainetdinovRR
PremontRT
BohnLM
LefkowitzRJ
CaronMG
2004 Desensitization of G protein-coupled receptors and neuronal functions. Annu Rev Neurosci 27 107 144
4. LefkowitzRJ
ShenoySK
2005 Transduction of receptor signals by beta-arrestins. Science 308 512 517
5. LuttrellLM
Gesty-PalmerD
2010 Beyond desensitization: physiological relevance of arrestin-dependent signaling. Pharmacol Rev 62 305 330
6. PenelaP
MurgaC
RibasC
LafargaV
MayorFJr
2010 The complex G protein-coupled receptor kinase 2 (GRK2) interactome unveils new physiopathological targets. British Journal of Pharmacology 160 821 832
7. PenelaP
MurgaC
RibasC
SalcedoA
Jurado-PueyoM
2008 G protein-coupled receptor kinase 2 (GRK2) in migration and inflammation. Archives of Physiology and Biochemistry 114 195 200
8. KovacsJJ
HaraMR
DavenportCL
KimJ
LefkowitzRJ
2009 Arrestin development: emerging roles for beta-arrestins in developmental signaling pathways. Dev Cell 17 443 458
9. RibasC
PenelaP
MurgaC
SalcedoA
Garcia-HozC
2007 The G protein-coupled receptor kinase (GRK) interactome: role of GRKs in GPCR regulation and signaling. Biochimica et Biophysica Acta 1768 913 922
10. PatelPA
TilleyDG
RockmanHA
2009 Physiologic and cardiac roles of beta-arrestins. J Mol Cell Cardiol 46 300 308
11. ShenoySK
DrakeMT
NelsonCD
HoutzDA
XiaoK
2006 beta -arrestin-dependent, G protein-independent ERK1/2 activation by the beta 2 adrenergic receptor. The Journal of Biological Chemistry 281 1261 1273
12. SpiegelA
2003 Cell signaling. beta-arrestin–not just for G protein-coupled receptors. Science 5638 1338 1339
13. WitherowDS
GarrisonTR
MillerWE
LefkowitzRJ
2004 beta-Arrestin inhibits NF-kappaB activity by means of its interaction with the NF-kappaB inhibitor IkappaBalpha. PNAS 101 8603 8607
14. GurevichVV
GurevichEV
2004 The molecular acrobatics of arrestin activation. Trends Pharmacol Sci 25 105 111
15. RomanG
HeJ
DavisRL
2000 kurtz, a novel nonvisual arrestin, is an essential neural gene in Drosophila. Genetics 155 1281 1295
16. GeH
KrishnanP
LiuL
KrishnanB
DavisRL
2006 A Drosophila nonvisual arrestin is required for the maintenance of olfactory sensitivity. Chemical Senses 31 49 62
17. LiuL
DavisRL
RomanG
2007 Exploratory activity in Drosophila requires the kurtz nonvisual arrestin. Genetics 175 1197 1212
18. JohnsonEC
TiftFW
McCauleyA
LiuL
RomanG
2008 Functional characterization of kurtz, a Drosophila non-visual arrestin, reveals conservation of GPCR desensitization mechanisms. Insect Biochemistry and Molecular Biology 38 1016 1022
19. LannuttiBJ
SchneiderLE
2001 Gprk2 controls cAMP levels in Drosophila development. Dev Biol 233 174 185
20. MolnarC
HolguinH
MayorFJr
Ruiz-GomezA
de CelisJF
2007 The G protein-coupled receptor regulatory kinase GPRK2 participates in Hedgehog signaling in Drosophila. PNAS 104 7963 7968
21. ChengS
MaierD
NeubueserD
HipfnerDR
2010 Regulation of Smoothened by Drosophila G-protein-coupled receptor kinases. Dev Biol 337 99 109
22. MeloniAR
FralishGB
KellyP
SalahpourA
ChenJK
2006 Smoothened signal transduction is promoted by G protein-coupled receptor kinase 2. Mol Cell Biol 26 7550 7560
23. MukherjeeA
VeraksaA
BauerA
RosseC
CamonisJ
2005 Regulation of Notch signalling by non-visual beta-arrestin. Nature Cell Biol 7 1191 1201
24. TippingM
KimY
KyriakakisP
TongM
ShvartsmanSY
2010 beta-arrestin Kurtz inhibits MAPK and Toll signalling in Drosophila development. The EMBO J 29 3222 3235
25. de CelisJF
2003 Pattern formation in the Drosophila wing: the development of the veins. Bio Essays 25 443 451
26. ChenW
RenXR
NelsonCD
BarakLS
ChenJK
2004 Activity-dependent internalization of Smoothened mediated by beta-arrestin 2 and GRK2. Science 306 2257 2260
27. WilbanksAM
FralishGB
KirbyML
BarakLS
LiYX
2004 Beta-arrestin 2 regulates zebrafish development through the hedgehog signaling pathway. Science 306 2264 2267
28. KovacsJJ
WhalenEJ
LuiR
XiaoK
KimJ
ChenM
WangJ
ChenW
Lefkowitz
2008 β-arrestin mediated localization of Smoothened to the primary cilium. Science 320 1777 1781
29. ChengZ-L
ZhaoJ
SunY
HuW
WuY-L
CenB
WuG-X
PeiG
2000 ß- Arrestin differentially regulates the chemokine receptor CXCR4-mediated signaling and receptor internalization, and this implicates multiple interaction sites between ß-Arrestin and CXCR4. J Biol Chem 275 2479 2485
30. CrozatierM
GliseB
VincentA
2002 Connecting Hh, Dpp and EGF signalling in patterning of the Drosophila wing; the pivotal role of collier/knot in the AP organiser. Development 129 4261 4269
31. DenefN
NeubuserD
PerezL
CohenSM
2000 Hedgehog induces opposite changes in turnover and subcellular localization of Patched and Smoothened. Cell 102 521 531
32. ZhuAJ
ZhengL
SuyamaK
ScottMP
2003 Altered localization of Drosophila Smoothened protein activates Hedgehog signal transduction. Genes Dev 17 1240 1252
33. FergusonSS
DowneyWE3rd
ColapietroAM
BarakLS
MenardL
1996 Role of beta-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science 271 363 366
34. GoodmanOBJr
KrupnickJG
GurevichVV
BenovicJL
KeenJH
1997 Arrestin/clathrin interaction. Localization of the arrestin binding locus to the clathrin terminal domain. J Biol Chem 272 15017 15022
35. KrupnickJG
GoodmanOBJr
KeenJH
BenovicJL
1997 Arrestin/clathrin interaction. Localization of the clathrin binding domain of nonvisual arrestins to the carboxy terminus. J Biol Chem 272 15011 15016
36. LinFT
ChenW
ShenoyS
CongM
ExumST
LefkowitzRJ
2002 Phosphorylation of beta-arrestin2 regulates its function in internalization of beta(2)-adrenergic receptors. Biochemistry 41 10692 10699
37. KimYM
BarakLS
CaronMG
BenovicJL
2002 Regulation of arrestin-3 phosphorylation by casein kinase II. J Biol Chem 277 16837 16846
38. JiaJ
TongC
WangB
LuoL
JiangJ
2004 Hedgehog signalling activity of Smoothened requires phosphorylation by protein kinase A and casein kinase I. Nature 7020 1045 1050
39. ApionishevS
KatanayevaNM
MarksSA
KalderonD
TomlinsonA
2005 Drosophila Smoothened phosphorylation sites essential for Hedgehog signal transduction. Nature Cell Biol 7 86 92
40. AyersKL
ThérondPP
2010 Evaluating Smoothened as a G-protein-coupled receptor for Hedgehog signalling. Trends Cell Biol 20 287 298
41. HanYG
KwokBH
KernanMJ
2003 Intraflagellar transport is required in Drosophila to differentiate sensory cilia but not sperm. Curr Biol 13 1679 1686
42. Avidor-ReissT
MaerAM
KoundakjianE
PolyanovskyA
KeilT
2004 Decoding cilia function: defining specialized genes required for compartmentalized cilia biogenesis. Cell 117 527 539
43. CruzC
GlavicA
CasadoM
de CelisJF
2009 A Gain of Function Screen Identifying Genes Required for Growth and Pattern Formation of the Drosophila melanogaster Wing. Genetics 183 1005 1023
44. de CelisJF
1997 Expression and function of decapentaplegic and thick veins in the differentiation of the veins in the Drosophila wing. Development 124 1007 1018
45. PetersonGL
1983 Determination of total protein. Methods Enzymol 91 95 121
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2011 Číslo 3
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Whole-Exome Re-Sequencing in a Family Quartet Identifies Mutations As the Cause of a Novel Skeletal Dysplasia
- Origin-Dependent Inverted-Repeat Amplification: A Replication-Based Model for Generating Palindromic Amplicons
- FUS Transgenic Rats Develop the Phenotypes of Amyotrophic Lateral Sclerosis and Frontotemporal Lobar Degeneration
- Limited dCTP Availability Accounts for Mitochondrial DNA Depletion in Mitochondrial Neurogastrointestinal Encephalomyopathy (MNGIE)