Global Analysis of the Relationship between JIL-1 Kinase and Transcription
The ubiquitous tandem kinase JIL-1 is essential for Drosophila development. Its role in defining decondensed domains of larval polytene chromosomes is well established, but its involvement in transcription regulation has remained controversial. For a first comprehensive molecular characterisation of JIL-1, we generated a high-resolution, chromosome-wide interaction profile of the kinase in Drosophila cells and determined its role in transcription. JIL-1 binds active genes along their entire length. The presence of the kinase is not proportional to average transcription levels or polymerase density. Comparison of JIL-1 association with elongating RNA polymerase and a variety of histone modifications suggests two distinct targeting principles. A basal level of JIL-1 binding can be defined that correlates best with the methylation of histone H3 at lysine 36, a mark that is placed co-transcriptionally. The additional acetylation of H4K16 defines a second state characterised by approximately twofold elevated JIL-1 levels, which is particularly prominent on the dosage-compensated male X chromosome. Phosphorylation of the histone H3 N-terminus by JIL-1 in vitro is compatible with other tail modifications. In vivo, phosphorylation of H3 at serine 10, together with acetylation at lysine 14, creates a composite histone mark that is enriched at JIL-1 binding regions. Its depletion by RNA interference leads to a modest, but significant, decrease of transcription from the male X chromosome. Collectively, the results suggest that JIL-1 participates in a complex histone modification network that characterises active, decondensed chromatin. We hypothesise that one specific role of JIL-1 may be to reinforce, rather than to establish, the status of active chromatin through the phosphorylation of histone H3 at serine 10.
Vyšlo v časopise:
Global Analysis of the Relationship between JIL-1 Kinase and Transcription. PLoS Genet 7(3): e32767. doi:10.1371/journal.pgen.1001327
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1001327
Souhrn
The ubiquitous tandem kinase JIL-1 is essential for Drosophila development. Its role in defining decondensed domains of larval polytene chromosomes is well established, but its involvement in transcription regulation has remained controversial. For a first comprehensive molecular characterisation of JIL-1, we generated a high-resolution, chromosome-wide interaction profile of the kinase in Drosophila cells and determined its role in transcription. JIL-1 binds active genes along their entire length. The presence of the kinase is not proportional to average transcription levels or polymerase density. Comparison of JIL-1 association with elongating RNA polymerase and a variety of histone modifications suggests two distinct targeting principles. A basal level of JIL-1 binding can be defined that correlates best with the methylation of histone H3 at lysine 36, a mark that is placed co-transcriptionally. The additional acetylation of H4K16 defines a second state characterised by approximately twofold elevated JIL-1 levels, which is particularly prominent on the dosage-compensated male X chromosome. Phosphorylation of the histone H3 N-terminus by JIL-1 in vitro is compatible with other tail modifications. In vivo, phosphorylation of H3 at serine 10, together with acetylation at lysine 14, creates a composite histone mark that is enriched at JIL-1 binding regions. Its depletion by RNA interference leads to a modest, but significant, decrease of transcription from the male X chromosome. Collectively, the results suggest that JIL-1 participates in a complex histone modification network that characterises active, decondensed chromatin. We hypothesise that one specific role of JIL-1 may be to reinforce, rather than to establish, the status of active chromatin through the phosphorylation of histone H3 at serine 10.
Zdroje
1. WangY
ZhangW
JinY
JohansenJ
JohansenKM
2001 The JIL-1 tandem kinase mediates histone H3 phosphorylation and is required for maintenance of chromatin structure in Drosophila. Cell 105 433 443
2. JinY
WangY
WalkerDL
DongH
ConleyC
1999 JIL-1: a novel chromosomal tandem kinase implicated in transcriptional regulation in Drosophila. Mol Cell 4 129 135
3. BaoX
CaiW
DengH
ZhangW
KrencikR
2008 The COOH-terminal domain of the JIL-1 histone H3S10 kinase interacts with histone H3 and is required for correct targeting to chromatin. J Biol Chem 283 32741 32750
4. DengH
ZhangW
BaoX
MartinJN
GirtonJ
2005 The JIL-1 kinase regulates the structure of Drosophila polytene chromosomes. Chromosoma 114 173 182
5. DengH
BaoX
CaiW
BlacketerMJ
BelmontAS
2008 Ectopic histone H3S10 phosphorylation causes chromatin structure remodeling in Drosophila. Development 135 699 705
6. ZhangW
DengH
BaoX
LerachS
GirtonJ
2006 The JIL-1 histone H3S10 kinase regulates dimethyl H3K9 modifications and heterochromatic spreading in Drosophila. Development 133 229 235
7. LerachS
ZhangW
BaoX
DengH
GirtonJ
2006 Loss-of-function alleles of the JIL-1 kinase are strong suppressors of position effect variegation of the wm4 allele in Drosophila. Genetics 173 2403 2406
8. BaoX
DengH
JohansenJ
GirtonJ
JohansenKM
2007 Loss-of-function alleles of the JIL-1 histone H3S10 kinase enhance position-effect variegation at pericentric sites in Drosophila heterochromatin. Genetics 176 1355 1358
9. EbertA
SchottaG
LeinS
KubicekS
KraussV
2004 Su(var) genes regulate the balance between euchromatin and heterochromatin in Drosophila. Genes Dev 18 2973 2983
10. DengH
BaoX
ZhangW
GirtonJ
JohansenJ
2007 Reduced levels of Su(var)3-9 but not Su(var)2-5 (HP1) counteract the effects on chromatin structure and viability in loss-of-function mutants of the JIL-1 histone H3S10 kinase. Genetics 177 79 87
11. DengH
CaiW
WangC
LerachS
DelattreM
2010 JIL-1 AND SU(VAR)3-7 Interact Genetically and Counteract Each Other's Effect on Position Effect Variegation in Drosophila. Genetics
12. VermeulenL
BergheWV
BeckIM
De BosscherK
HaegemanG
2009 The versatile role of MSKs in transcriptional regulation. Trends Biochem Sci 34 311 318
13. WinterS
SimboeckE
FischleW
ZupkovitzG
DohnalI
2008 14-3-3 proteins recognize a histone code at histone H3 and are required for transcriptional activation. EMBO J 27 88 99
14. VicentGP
BallareC
NachtAS
ClausellJ
Subtil-RodriguezA
2006 Induction of progesterone target genes requires activation of Erk and Msk kinases and phosphorylation of histone H3. Mol Cell 24 367 381
15. MacdonaldN
WelburnJP
NobleME
NguyenA
YaffeMB
2005 Molecular basis for the recognition of phosphorylated and phosphoacetylated histone h3 by 14-3-3. Mol Cell 20 199 211
16. ZippoA
SerafiniR
RocchigianiM
PennacchiniS
KrepelovaA
2009 Histone crosstalk between H3S10ph and H4K16ac generates a histone code that mediates transcription elongation. Cell 138 1122 1136
17. KaramCS
KellnerWA
TakenakaN
ClemmonsAW
CorcesVG
2010 14-3-3 Mediates Histone Cross-Talk during Transcription Elongation in Drosophila. PLoS Genet 6 e1000975 doi:10.1371/journal.pgen.1000975
18. IvaldiMS
KaramCS
CorcesVG
2007 Phosphorylation of histone H3 at Ser10 facilitates RNA polymerase II release from promoter-proximal pausing in Drosophila. Genes Dev 21 2818 2831
19. CaiW
BaoX
DengH
JinY
GirtonJ
2008 RNA polymerase II-mediated transcription at active loci does not require histone H3S10 phosphorylation in Drosophila. Development 135 2917 2925
20. StraubT
BeckerPB
2007 Dosage compensation: the beginning and end of generalization. Nat Rev Genet 8 47 57
21. GelbartME
KurodaMI
2009 Drosophila dosage compensation: a complex voyage to the X chromosome. Development 136 1399 1410
22. JinY
WangY
JohansenJ
JohansenKM
2000 JIL-1, a chromosomal kinase implicated in regulation of chromatin structure, associates with the male specific lethal (MSL) dosage compensation complex. J Cell Biol 149 1005 1010
23. AlekseyenkoAA
LarschanE
LaiWR
ParkPJ
KurodaMI
2006 High-resolution ChIP-chip analysis reveals that the Drosophila MSL complex selectively identifies active genes on the male X chromosome. Genes Dev 20 848 857
24. GilfillanGD
StraubT
de WitE
GreilF
LammR
2006 Chromosome-wide gene-specific targeting of the Drosophila dosage compensation complex. Genes Dev 20 858 870
25. GelbartME
LarschanE
PengS
ParkPJ
KurodaMI
2009 Drosophila MSL complex globally acetylates H4K16 on the male X chromosome for dosage compensation. Nat Struct Mol Biol 16 825 832
26. PrestelM
FellerC
StraubT
MitlöhnerH
BeckerPB
2010 The activation potential of MOF is constrained for doasege compensation. Molecular Cell 38 815 826
27. Shogren-KnaakM
IshiiH
SunJM
PazinMJ
DavieJR
2006 Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311 844 847
28. ZhangY
OliverB
2010 An evolutionary consequence of dosage compensation on Drosophila melanogaster female X-chromatin structure? BMC Genomics 11 6
29. StraubT
GrimaudC
GilfillanGD
MitterwegerA
BeckerPB
2008 The chromosomal high-affinity binding sites for the Drosophila dosage compensation complex. PLoS Genet 4 e1000302 doi:10.1371/journal.pgen.1000302
30. LarschanE
AlekseyenkoAA
GortchakovAA
PengS
LiB
2007 MSL complex is attracted to genes marked by H3K36 trimethylation using a sequence-independent mechanism. Mol Cell 28 121 133
31. LeeJS
ShilatifardA
2007 A site to remember: H3K36 methylation a mark for histone deacetylation. Mutat Res 618 130 134
32. Villar-GareaA
ImhofA
2008 Fine mapping of posttranslational modifications of the linker histone H1 from Drosophila melanogaster. PLoS ONE 3 e1553 doi:10.1371/journal.pone.0001553
33. BoekeJ
RegnardC
CaiW
JohansenJ
JohansenKM
2010 Phosphorylation of SU(VAR)3-9 by the chromosomal kinase JIL-1. PLoS ONE 5 e10042 doi:10.1371/journal.pone.0010042
34. GietR
GloverDM
2001 Drosophila aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis. J Cell Biol 152 669 682
35. NowakSJ
CorcesVG
2004 Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet 20 214 220
36. GadeaBB
RudermanJV
2005 Aurora kinase inhibitor ZM447439 blocks chromosome-induced spindle assembly, the completion of chromosome condensation, and the establishment of the spindle integrity checkpoint in Xenopus egg extracts. Mol Biol Cell 16 1305 1318
37. Morales-MuliaS
ScholeyJM
2005 Spindle pole organization in Drosophila S2 cells by dynein, abnormal spindle protein (Asp), and KLP10A. Mol Biol Cell 16 3176 3186
38. ClaytonAL
HazzalinCA
MahadevanLC
2006 Enhanced histone acetylation and transcription: a dynamic perspective. Mol Cell 23 289 296
39. ClaytonAL
RoseS
BarrattMJ
MahadevanLC
2000 Phosphoacetylation of histone H3 on c-fos- and c-jun-associated nucleosomes upon gene activation. EMBO J 19 3714 3726
40. BrunmeirR
LaggerS
SimboeckE
SawickaA
EggerG
2010 Epigenetic regulation of a murine retrotransposon by a dual histone modification mark. PLoS Genet 6 e1000927 doi:10.1371/journal.pgen.1000927
41. PeteschSJ
LisJT
2008 Rapid, transcription-independent loss of nucleosomes over a large chromatin domain at Hsp70 loci. Cell 134 74 84
42. ZinkD
ParoR
1995 Drosophila Polycomb-group regulated chromatin inhibits the accessibility of a trans-activator to its target DNA. EMBO J 14 5660 5671
43. KelleyRL
WangJ
BellL
KurodaMI
1997 Sex lethal controls dosage compensation in Drosophila by a non-splicing mechanism. Nature 387 195 199
44. DahlsveenIK
GilfillanGD
ShelestVI
LammR
BeckerPB
2006 Targeting determinants of dosage compensation in Drosophila. PLoS Genet 2 e5 doi:10.1371/journal.pgen.0020005
45. FilionGJ
van BemmelJG
BraunschweigU
TalhoutW
KindJ
2010 Systematic protein location mapping reveals five principal chromatin types in Drosophila cells. Cell 143 212 224
46. KindJ
VaquerizasJM
GebhardtP
GentzelM
LuscombeNM
2008 Genome-wide analysis reveals MOF as a key regulator of dosage compensation and gene expression in Drosophila. Cell 133 813 828
47. RajaSJ
CharapitsaI
ConradT
VaquerizasJM
GebhardtP
2010 The nonspecific lethal complex is a transcriptional regulator in Drosophila. Molecular Cell 38 827 841
48. CiurciuA
KomonyiO
BorosIM
2008 Loss of ATAC-specific acetylation of histone H4 at Lys12 reduces binding of JIL-1 to chromatin and phosphorylation of histone H3 at Ser10. J Cell Sci 121 3366 3372
49. SuganumaT
GutierrezJL
LiB
FlorensL
SwansonSK
2008 ATAC is a double histone acetyltransferase complex that stimulates nucleosome sliding. Nat Struct Mol Biol 15 364 372
50. LoWS
TrievelRC
RojasJR
DugganL
HsuJY
2000 Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14. Mol Cell 5 917 926
51. CheungP
TannerKG
CheungWL
Sassone-CorsiP
DenuJM
2000 Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol Cell 5 905 915
52. ReaS
EisenhaberF
O'CarrollD
StrahlBD
SunZW
2000 Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406 593 599
53. ZippoA
De RobertisA
SerafiniR
OlivieroS
2007 PIM1-dependent phosphorylation of histone H3 at serine 10 is required for MYC-dependent transcriptional activation and oncogenic transformation. Nat Cell Biol 9 932 944
54. WinterS
FischleW
SeiserC
2008 Modulation of 14-3-3 interaction with phosphorylated histone H3 by combinatorial modification patterns. Cell Cycle 7 1336 1342
55. FudaNJ
ArdehaliMB
LisJT
2009 Defining mechanisms that regulate RNA polymerase II transcription in vivo. Nature 461 186 192
56. HagerGL
McNallyJG
MisteliT
2009 Transcription dynamics. Mol Cell 35 741 753
57. WijgerdeM
GrosveldF
FraserP
1995 Transcription complex stability and chromatin dynamics in vivo. Nature 377 209 213
58. FischleW
TsengBS
DormannHL
UeberheideBM
GarciaBA
2005 Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438 1116 1122
59. HirotaT
LippJJ
TohBH
PetersJM
2005 Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature 438 1176 1180
60. BaoX
ZhangW
KrencikR
DengH
WangY
2005 The JIL-1 kinase interacts with lamin Dm0 and regulates nuclear lamina morphology of Drosophila nurse cells. J Cell Sci 118 5079 5087
61. NegreN
HennetinJ
SunLV
LavrovS
BellisM
2006 Chromosomal distribution of PcG proteins during Drosophila development. PLoS Biol 4 e170 doi:10.1371/journal.pbio.0040170
62. GilfillanGD
KonigC
DahlsveenIK
PrakouraN
StraubT
2007 Cumulative contributions of weak DNA determinants to targeting the Drosophila dosage compensation complex. Nucleic Acids Res 35 3561 3572
63. TusherVG
TibshiraniR
ChuG
2001 Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98 5116 5121
64. EfronB
2007 Correlation and large scale simultaneous significance testing. Jour Amer Stat Assoc 102 99 103
65. HumburgP
BulgerD
StoneG
2008 Parameter estimation for robust HMM analysis of ChIP-chip data. BMC Bioinformatics 9 343
66. StraubT
NeumannMF
PrestelM
KremmerE
KaetherC
2005 Stable chromosomal association of MSL2 defines a dosage-compensated nuclear compartment. Chromosoma 114 352 364
67. RisauW
SaumweberH
SymmonsP
1981 Monoclonal antibodies against a nuclear membrane protein of Drosophila. Localization by indirect immunofluorescence and detection of antigen using a new protein blotting procedure. Exp Cell Res 133 47 54
68. BoehmAK
SaundersA
WernerJ
LisJT
2003 Transcription factor and polymerase recruitment, modification, and movement on dhsp70 in vivo in the minutes following heat shock. Mol Cell Biol 23 7628 7637
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2011 Číslo 3
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Whole-Exome Re-Sequencing in a Family Quartet Identifies Mutations As the Cause of a Novel Skeletal Dysplasia
- Origin-Dependent Inverted-Repeat Amplification: A Replication-Based Model for Generating Palindromic Amplicons
- FUS Transgenic Rats Develop the Phenotypes of Amyotrophic Lateral Sclerosis and Frontotemporal Lobar Degeneration
- Limited dCTP Availability Accounts for Mitochondrial DNA Depletion in Mitochondrial Neurogastrointestinal Encephalomyopathy (MNGIE)