Rif1 Supports the Function of the CST Complex in Yeast Telomere Capping
Telomere integrity in budding yeast depends on the CST (Cdc13-Stn1-Ten1) and shelterin-like (Rap1-Rif1-Rif2) complexes, which are thought to act independently from each other. Here we show that a specific functional interaction indeed exists among components of the two complexes. In particular, unlike RIF2 deletion, the lack of Rif1 is lethal for stn1ΔC cells and causes a dramatic reduction in viability of cdc13-1 and cdc13-5 mutants. This synthetic interaction between Rif1 and the CST complex occurs independently of rif1Δ-induced alterations in telomere length. Both cdc13-1 rif1Δ and cdc13-5 rif1Δ cells display very high amounts of telomeric single-stranded DNA and DNA damage checkpoint activation, indicating that severe defects in telomere integrity cause their loss of viability. In agreement with this hypothesis, both DNA damage checkpoint activation and lethality in cdc13 rif1Δ cells are partially counteracted by the lack of the Exo1 nuclease, which is involved in telomeric single-stranded DNA generation. The functional interaction between Rif1 and the CST complex is specific, because RIF1 deletion does not enhance checkpoint activation in case of CST-independent telomere capping deficiencies, such as those caused by the absence of Yku or telomerase. Thus, these data highlight a novel role for Rif1 in assisting the essential telomere protection function of the CST complex.
Vyšlo v časopise:
Rif1 Supports the Function of the CST Complex in Yeast Telomere Capping. PLoS Genet 7(3): e32767. doi:10.1371/journal.pgen.1002024
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1002024
Souhrn
Telomere integrity in budding yeast depends on the CST (Cdc13-Stn1-Ten1) and shelterin-like (Rap1-Rif1-Rif2) complexes, which are thought to act independently from each other. Here we show that a specific functional interaction indeed exists among components of the two complexes. In particular, unlike RIF2 deletion, the lack of Rif1 is lethal for stn1ΔC cells and causes a dramatic reduction in viability of cdc13-1 and cdc13-5 mutants. This synthetic interaction between Rif1 and the CST complex occurs independently of rif1Δ-induced alterations in telomere length. Both cdc13-1 rif1Δ and cdc13-5 rif1Δ cells display very high amounts of telomeric single-stranded DNA and DNA damage checkpoint activation, indicating that severe defects in telomere integrity cause their loss of viability. In agreement with this hypothesis, both DNA damage checkpoint activation and lethality in cdc13 rif1Δ cells are partially counteracted by the lack of the Exo1 nuclease, which is involved in telomeric single-stranded DNA generation. The functional interaction between Rif1 and the CST complex is specific, because RIF1 deletion does not enhance checkpoint activation in case of CST-independent telomere capping deficiencies, such as those caused by the absence of Yku or telomerase. Thus, these data highlight a novel role for Rif1 in assisting the essential telomere protection function of the CST complex.
Zdroje
1. LongheseMP 2008 DNA damage response at functional and dysfunctional telomeres. Genes Dev 22 125 140
2. NugentCIHughesTRLueNFLundbladV 1996 Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science 274 249 252
3. EvansSKLundbladV 1999 Est1 and Cdc13 as comediators of telomerase access. Science 286 117 120
4. PennockEBuckleyKLundbladV 2001 Cdc13 delivers separate complexes to the telomere for end protection and replication. Cell 104 387 396
5. BianchiANegriniSShoreD 2004 Delivery of yeast telomerase to a DNA break depends on the recruitment functions of Cdc13 and Est1. Mol Cell 16 139 146
6. ChanABouléJBZakianVA 2008 Two pathways recruit telomerase to Saccharomyces cerevisiae telomeres. PLoS Genet 4 e1000236 doi:10.1371/journal.pgen.1000236
7. QiHZakianVA 2000 The Saccharomyces telomere-binding protein Cdc13p interacts with both the catalytic subunit of DNA polymerase α and the telomerase-associated Est1 protein. Genes Dev 14 1777 1788
8. WellingerRJWolfAJZakianVA 1993 Saccharomyces telomeres acquire single-strand TG1-3 tails late in S phase. Cell 72 51 60
9. DionneIWellingerRJ 1996 Cell cycle-regulated generation of single-stranded G-rich DNA in the absence of telomerase. Proc Natl Acad Sci USA 93 13902 13907
10. LarrivéeMLeBelCWellingerRJ 2004 The generation of proper constitutive G-tails on yeast telomeres is dependent on the MRX complex. Genes Dev 18 1391 1396
11. BonettiDMartinaMClericiMLucchiniGLongheseMP 2009 Multiple pathways regulate 3′ overhang generation at S. cerevisiae telomeres. Mol Cell 35 70 81
12. FrankCJHydeMGreiderCW 2006 Regulation of telomere elongation by the cyclin-dependent kinase CDK1. Mol Cell 24 423 432
13. VodenicharovMDWellingerRJ 2006 DNA degradation at unprotected telomeres in yeast is regulated by the CDK1 (Cdc28/Clb) cell-cycle kinase. Mol Cell 24 127 137
14. GarvikBCarsonMHartwellL 1995 Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint. Mol Cell Biol 15 6128 6138
15. LinJJZakianVA 1996 The Saccharomyces Cdc13 protein is a single-strand TG1-3 telomeric DNA-binding protein in vitro that affects telomere behavior in vivo. Proc Natl Acad Sci USA 93 13760 13765
16. GaoHCervantesRBMandellEKOteroJHLundbladV 2007 RPA-like proteins mediate yeast telomere function. Nat Struct Mol Biol 14 208 214
17. WeinertTAKiserGLHartwellLH 1994 Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair. Genes Dev 8 652 665
18. LydallDWeinertT 1995 Yeast checkpoint genes in DNA damage processing: implications for repair and arrest. Science 270 1488 1491
19. GrandinNReedSICharbonneauM 1997 Stn1, a new Saccharomyces cerevisiae protein, is implicated in telomere size regulation in association with Cdc13. Genes Dev 11 512 527
20. GrandinNDamonCCharbonneauM 2001 Ten1 functions in telomere end protection and length regulation in association with Stn1 and Cdc13. EMBO J 20 1173 1183
21. XuLPetreacaRCGasparyanHJVuSNugentCI 2009 TEN1 is essential for CDC13-mediated telomere capping. Genetics 183 793 810
22. GrossiSPuglisiADmitrievPVLopesMShoreD 2004 Pol12, the B subunit of DNA polymerase α, functions in both telomere capping and length regulation. Genes Dev 18 992 1006
23. GrandinNDamonCCharbonneauM 2000 Cdc13 cooperates with the yeast Ku proteins and Stn1 to regulate telomerase recruitment. Mol Cell Biol 20 8397 8408
24. ChandraAHughesTRNugentCILundbladV 2001 Cdc13 both positively and negatively regulates telomere replication. Genes Dev 15 404 414
25. PetreacaRCChiuHCNugentCI 2007 The role of Stn1p in Saccharomyces cerevisiae telomere capping can be separated from its interaction with Cdc13p. Genetics 177 1459 1474
26. PuglisiABianchiALemmensLDamayPShoreD 2008 Distinct roles for yeast Stn1 in telomere capping and telomerase inhibition. EMBO J 27 2328 2339
27. PalmWde LangeT 2008 How shelterin protects mammalian telomeres. Annu Rev Genet 42 301 334
28. ConradMNWrightJHWolfAJZakianVA 1990 RAP1 protein interacts with yeast telomeres in vivo: overproduction alters telomere structure and decreases chromosome stability. Cell 63 739 750
29. HardyCFSusselLShoreD 1992 A RAP1-interacting protein involved in transcriptional silencing and telomere length regulation. Genes Dev 6 801 814
30. WottonDShoreD 1997 A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae. Genes Dev 11 748 760
31. LevyDLBlackburnEH 2004 Counting of Rif1p and Rif2p on Saccharomyces cerevisiae telomeres regulates telomere length. Mol Cell Biol 24 10857 10867
32. MarcandSPardoBGratiasACahunSCallebautI 2008 Multiple pathways inhibit NHEJ at telomeres. Genes Dev 22 1153 1158
33. BonettiDClericiMAnbalaganSMartinaMLucchiniG 2010 Shelterin-like proteins and Yku inhibit nucleolytic processing of Saccharomyces cerevisiae telomeres. PLoS Genet 6 e1000966 doi:10.1371/journal.pgen.1000966
34. VodenicharovMDLaterreurNWellingerRJ 2010 Telomere capping in non-dividing yeast cells requires Yku and Rap1. EMBO J 29 3007 3019
35. HiranoYFukunagaKSugimotoK 2009 Rif1 and Rif2 inhibit localization of Tel1 to DNA ends. Mol Cell 33 312 322
36. HiranoYSugimotoK 2007 Cdc13 telomere capping decreases Mec1 association but does not affect Tel1 association with DNA ends. Mol Biol Cell 18 2026 2036
37. AddinallSGDowneyMYuMZubkoMKDewarJ 2008 A genome wide suppressor and enhancer analysis of cdc13-1 reveals varied cellular processes influencing telomere capping in Saccharomyces cerevisiae. Genetics 180 2251 2266
38. Giraud-PanisMJTeixeiraMTGéliVGilsonE 2010 CST meets shelterin to keep telomeres in check. Mol Cell 39 665 676
39. LongheseMPJovineLPlevaniPLucchiniG 1993 Conditional mutations in the yeast DNA primase genes affect different aspects of DNA metabolism and interactions in the DNA polymerase α-primase complex. Genetics 133 183 91
40. CarsonMJHartwellL 1985 CDC17: an essential gene that prevents telomere elongation in yeast. Cell 42 249 257
41. PizzagalliAValsasniniPPlevaniPLucchiniG 1988 DNA polymerase I gene of Saccharomyces cerevisiae: nucleotide sequence, mapping of a temperature-sensitive mutation, and protein homology with other DNA polymerases. Proc Natl Acad Sci USA 85 3772 3776
42. WeinertTAHartwellLH 1993 Cell cycle arrest of cdc mutants and specificity of the RAD9 checkpoint. Genetics 134 63 80
43. ZubkoMKGuillardSLydallD 2004 Exo1 and Rad24 differentially regulate generation of ssDNA at telomeres of Saccharomyces cerevisiae cdc13-1 mutants. Genetics 168 103 115
44. TengSCChangJMcCowanBZakianVA 2000 Telomerase-independent lengthening of yeast telomeres occurs by an abrupt Rad50p-dependent, Rif-inhibited recombinational process. Mol Cell 6 947 952
45. ChanSWChangJPrescottJBlackburnEH 2001 Altering telomere structure allows telomerase to act in yeast lacking ATM kinases. Curr Biol 11 1240 1250
46. GoudsouzianLKTuzonCTZakianVA 2006 S. cerevisiae Tel1p and Mre11p are required for normal levels of Est1p and Est2p telomere association. Mol Cell 24 603 610
47. MaringeleLLydallD 2002 EXO1-dependent single-stranded DNA at telomeres activates subsets of DNA damage and spindle checkpoint pathways in budding yeast yku70Δ mutants. Genes Dev 16 1919 1933
48. GravelSLarrivéeMLabrecquePWellingerRJ 1998 Yeast Ku as a regulator of chromosomal DNA end structure. Science 280 741 744
49. PolotniankaRMLiJLustigAJ 1998 The yeast Ku heterodimer is essential for protection of the telomere against nucleolytic and recombinational activities. Curr Biol 8 831 834
50. BertuchAALundbladV 2004 EXO1 contributes to telomere maintenance in both telomerase-proficient and telomerase-deficient Saccharomyces cerevisiae. Genetics 166 1651 1659
51. BarnesGRioD 1997 DNA double-strand-break sensitivity, DNA replication, and cell cycle arrest phenotypes of Ku-deficient Saccharomyces cerevisiae. Proc Natl Acad Sci USA 94 867 872
52. NugentCIBoscoGRossLOEvansSKSalingerAP 1998 Telomere maintenance is dependent on activities required for end repair of double-strand breaks. Curr Biol 8 657 660
53. FeldmannHWinnackerEL 1993 A putative homologue of the human autoantigen Ku from Saccharomyces cerevisiae. J Biol Chem 268 12895 12900
54. GravelSWellingerRJ 2002 Maintenance of double-stranded telomeric repeats as the critical determinant for cell viability in yeast cells lacking Ku. Mol Cell Biol 22 2182 2193
55. LundbladVSzostakJW 1989 A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57 633 643
56. IJpmaASGreiderCW 2003 Short telomeres induce a DNA damage response in Saccharomyces cerevisiae. Mol Biol Cell 14 987 1001
57. OzaPJaspersenSLMieleADekkerJPetersonCL 2009 Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery. Genes Dev 23 912 927
58. LeeSEMooreJKHolmesAUmezuKKolodnerRD 1998 Saccharomyces Ku70, Mre11/Rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94 399 409
59. McGeeJSPhillipsJAChanASabourinMPaeschkeK 2010 Reduced Rif2 and lack of Mec1 target short telomeres for elongation rather than double-strand break repair. Nat Struct Mol Biol 17 1438 1445
60. de BruinDZamanZLiberatoreRAPtashneM 2001 Telomere looping permits gene activation by a downstream UAS in yeast. Nature 409 109 113
61. Strahl-BolsingerSHechtALuoKGrunsteinM 1997 SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast. Genes Dev 11 83 93
62. WanMQinJSongyangZLiuD 2009 OB fold-containing protein 1 (OBFC1), a human homolog of yeast Stn1, associates with TPP1 and is implicated in telomere length regulation. J Biol Chem 284 26725 26731
63. GoulianMHeardCJGrimmSL 1990 Purification and properties of an accessory protein for DNA polymerase α/primase. J Biol Chem 265 13221 13230
64. CasteelDEZhuangSZengYPerrinoFWBossGR 2009 A DNA polymerase α-primase cofactor with homology to replication protein A-32 regulates DNA replication in mammalian cells. J Biol Chem 284 5807 5818
65. MartínVDuLLRozenzhakSRussellP 2007 Protection of telomeres by a conserved Stn1-Ten1 complex. Proc Natl Acad Sci USA 104 14038 14043
66. SongXLeehyKWarringtonRTLambJCSurovtsevaYV 2008 STN1 protects chromosome ends in Arabidopsis thaliana. Proc Natl Acad Sci USA 105 19815 19820
67. SurovtsevaYVChurikovDBoltzKASongXLambJC 2009 Conserved telomere maintenance component 1 interacts with STN1 and maintains chromosome ends in higher eukaryotes. Mol Cell 36 207 218
68. MiyakeYNakamuraMNabetaniAShimamuraSTamuraM 2009 RPA-like mammalian Ctc1-Stn1-Ten1 complex binds to single-stranded DNA and protects telomeres independently of the Pot1 pathway. Mol Cell 36 193 206
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2011 Číslo 3
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Whole-Exome Re-Sequencing in a Family Quartet Identifies Mutations As the Cause of a Novel Skeletal Dysplasia
- Origin-Dependent Inverted-Repeat Amplification: A Replication-Based Model for Generating Palindromic Amplicons
- FUS Transgenic Rats Develop the Phenotypes of Amyotrophic Lateral Sclerosis and Frontotemporal Lobar Degeneration
- Limited dCTP Availability Accounts for Mitochondrial DNA Depletion in Mitochondrial Neurogastrointestinal Encephalomyopathy (MNGIE)