#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A Tradeoff Drives the Evolution of Reduced Metal Resistance in
Natural Populations of Yeast


Various types of genetic modification and selective forces have been implicated

in the process of adaptation to novel or adverse environments. However, the

underlying molecular mechanisms are not well understood in most natural

populations. Here we report that a set of yeast strains collected from Evolution

Canyon (EC), Israel, exhibit an extremely high tolerance to the heavy metal

cadmium. We found that cadmium resistance is primarily caused by an enhanced

function of a metal efflux pump, PCA1. Molecular analyses

demonstrate that this enhancement can be largely attributed to mutations in the

promoter sequence, while mutations in the coding region have a minor effect.

Reconstruction experiments show that three single nucleotide substitutions in

the PCA1 promoter quantitatively increase its activity and thus

enhance the cells' cadmium resistance. Comparison among different yeast

species shows that the critical nucleotides found in EC strains are conserved

and functionally important for cadmium resistance in other species, suggesting

that they represent an ancestral type. However, these nucleotides had diverged

in most Saccharomyces cerevisiae populations, which gave cells

growth advantages under conditions where cadmium is low or absent. Our results

provide a rare example of a selective sweep in yeast populations driven by a

tradeoff in metal resistance.


Vyšlo v časopise: A Tradeoff Drives the Evolution of Reduced Metal Resistance in Natural Populations of Yeast. PLoS Genet 7(3): e32767. doi:10.1371/journal.pgen.1002034
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002034

Souhrn

Various types of genetic modification and selective forces have been implicated

in the process of adaptation to novel or adverse environments. However, the

underlying molecular mechanisms are not well understood in most natural

populations. Here we report that a set of yeast strains collected from Evolution

Canyon (EC), Israel, exhibit an extremely high tolerance to the heavy metal

cadmium. We found that cadmium resistance is primarily caused by an enhanced

function of a metal efflux pump, PCA1. Molecular analyses

demonstrate that this enhancement can be largely attributed to mutations in the

promoter sequence, while mutations in the coding region have a minor effect.

Reconstruction experiments show that three single nucleotide substitutions in

the PCA1 promoter quantitatively increase its activity and thus

enhance the cells' cadmium resistance. Comparison among different yeast

species shows that the critical nucleotides found in EC strains are conserved

and functionally important for cadmium resistance in other species, suggesting

that they represent an ancestral type. However, these nucleotides had diverged

in most Saccharomyces cerevisiae populations, which gave cells

growth advantages under conditions where cadmium is low or absent. Our results

provide a rare example of a selective sweep in yeast populations driven by a

tradeoff in metal resistance.


Zdroje

1. NilssonAIZorzetAKanthADahlstromSBergOG

2006

Reducing the fitness cost of antibiotic resistance by

amplification of initiator tRNA genes.

Proc Natl Acad Sci U S A

103

6976

6981

2. TodescoMBalasubramanianSHuTTTrawMBHortonM

2010

Natural allelic variation underlying a major fitness trade-off in

Arabidopsis thaliana.

Nature

465

632

636

3. CowenLESanglardDCalabreseDSirjusinghCAndersonJB

2000

Evolution of drug resistance in experimental populations of

Candida albicans.

J Bacteriol

182

1515

1522

4. SegreAVMurrayAWLeuJY

2006

High-resolution mutation mapping reveals parallel experimental

evolution in yeast.

PLoS Biol

4

e256

doi:10.1371/journal.pbio.0040256

5. BeaumontHJGallieJKostCFergusonGCRaineyPB

2009

Experimental evolution of bet hedging.

Nature

462

90

93

6. BarrickJEYuDSYoonSHJeongHOhTK

2009

Genome evolution and adaptation in a long-term experiment with

Escherichia coli.

Nature

461

1243

1247

7. CooperTFRozenDELenskiRE

2003

Parallel changes in gene expression after 20,000 generations of

evolution in Escherichiacoli.

Proc Natl Acad Sci U S A

100

1072

1077

8. ChouHHBerthetJMarxCJ

2009

Fast growth increases the selective advantage of a mutation

arising recurrently during evolution under metal limitation.

PLoS Genet

5

e1000652

doi:10.1371/journal.pgen.1000652

9. VelicerGJYuYT

2003

Evolution of novel cooperative swarming in the bacterium

Myxococcus xanthus.

Nature

425

75

78

10. GuptaAMatsuiKLoJFSilverS

1999

Molecular basis for resistance to silver cations in

Salmonella.

Nat Med

5

183

188

11. AndersonJB

2005

Evolution of antifungal-drug resistance: mechanisms and pathogen

fitness.

Nat Rev Microbiol

3

547

556

12. HaferburgGKotheE

2007

Microbes and metals: interactions in the

environment.

J Basic Microbiol

47

453

467

13. DeutschbauerAMDavisRW

2005

Quantitative trait loci mapped to single-nucleotide resolution in

yeast.

Nat Genet

37

1333

1340

14. FidalgoMBarralesRRIbeasJIJimenezJ

2006

Adaptive evolution by mutations in the FLO11

gene.

Proc Natl Acad Sci U S A

103

11228

11233

15. SteinmetzLMSinhaHRichardsDRSpiegelmanJIOefnerPJ

2002

Dissecting the architecture of a quantitative trait locus in

yeast.

Nature

416

326

330

16. FayJCMcCulloughHLSniegowskiPDEisenMB

2004

Population genetic variation in gene expression is associated

with phenotypic variation in Saccharomyces cerevisiae.

Genome Biol

5

R26

17. Perez-OrtinJEQuerolAPuigSBarrioE

2002

Molecular characterization of a chromosomal rearrangement

involved in the adaptive evolution of yeast strains.

Genome Res

12

1533

1539

18. GerkeJLorenzKCohenB

2009

Genetic interactions between transcription factors cause natural

variation in yeast.

Science

323

498

501

19. WilsonCJApiyoDWittung-StafshedeP

2004

Role of cofactors in metalloprotein folding.

Q Rev Biophys

37

285

314

20. PierrelFCobinePAWingeDR

2007

Metal Ion availability in mitochondria.

Biometals

20

675

682

21. LiangQZhouB

2007

Copper and manganese induce yeast apoptosis via different

pathways.

Mol Biol Cell

18

4741

4749

22. BruinsMRKapilSOehmeFW

2000

Microbial resistance to metals in the

environment.

Ecotoxicol Environ Saf

45

198

207

23. ValkoMMorrisHCroninMT

2005

Metals, toxicity and oxidative stress.

Curr Med Chem

12

1161

1208

24. ThorsenMPerroneGGKristianssonETrainiMYeT

2009

Genetic basis of arsenite and cadmium tolerance in Saccharomyces

cerevisiae.

BMC Genomics

10

105

25. ShiHShiXLiuKJ

2004

Oxidative mechanism of arsenic toxicity and

carcinogenesis.

Mol Cell Biochem

255

67

78

26. RosenBP

2002

Transport and detoxification systems for transition metals, heavy

metals and metalloids in eukaryotic and prokaryotic

microbes.

Comp Biochem Physiol A Mol Integr Physiol

133

689

693

27. SilverSPhung leT

2005

A bacterial view of the periodic table: genes and proteins for

toxic inorganic ions.

J Ind Microbiol Biotechnol

32

587

605

28. ShiraishiEInouheMJohoMTohoyamaH

2000

The cadmium-resistant gene, CAD2, which is a mutated putative

copper-transporter gene (PCA1), controls the intracellular cadmium-level in

the yeast S. cerevisiae.

Curr Genet

37

79

86

29. AdleDJSinaniDKimHLeeJ

2007

A cadmium-transporting P1B-type ATPase in yeast Saccharomyces

cerevisiae.

J Biol Chem

282

947

955

30. NevoE

1995

Asian, African and European Biota Meet at Evolution-Canyon Israel

- Local Tests of Global Biodiversity and Genetic Diversity

Patterns.

Proceedings of the Royal Society of London Series B-Biological

Sciences

262

149

155

31. GrishkanINevoEWasserSPBeharavA

2003

Adaptive spatiotemporal distribution of soil microfungi in

‘Evolution canyon’ II, Lower Nahal Keziv, western Upper Galilee,

Israel.

Biological Journal of the Linnean Society

78

527

539

32. EzovTKBoger-NadjarEFrenkelZKatsperovskiIKemenyS

2006

Molecular-genetic biodiversity in a natural population of the

yeast Saccharomyces cerevisiae from “Evolution Canyon”:

microsatellite polymorphism, ploidy and controversial sexual

status.

Genetics

174

1455

1468

33. Katz EzovTChangSLFrenkelZSegreAVBahalulM

2010

Heterothallism in Saccharomyces cerevisiae isolates from nature:

effect of HO locus on the mode of reproduction.

Mol Ecol

19

121

131

34. DunhamMJBadraneHFereaTAdamsJBrownPO

2002

Characteristic genome rearrangements in experimental evolution of

Saccharomyces cerevisiae.

Proc Natl Acad Sci U S A

99

16144

16149

35. InfanteJJDombekKMRebordinosLCantoralJMYoungET

2003

Genome-wide amplifications caused by chromosomal rearrangements

play a major role in the adaptive evolution of natural

yeast.

Genetics

165

1745

1759

36. AdleDJLeeJ

2008

Expressional control of a cadmium-transporting P1B-type ATPase by

a metal sensing degradation signal.

J Biol Chem

283

31460

31468

37. LitiGCarterDMMosesAMWarringerJPartsL

2009

Population genomics of domestic and wild yeasts.

Nature

458

337

341

38. RadMRKirchrathLHollenbergCP

1994

A putative P-type Cu(2+)-transporting ATPase gene on

chromosome II of Saccharomyces cerevisiae.

Yeast

10

1217

1225

39. WilliamsLEMillsRF

2005

P(1B)-ATPases–an ancient family of transition metal pumps

with diverse functions in plants.

Trends Plant Sci

10

491

502

40. ArguelloJMErenEGonzalez-GuerreroM

2007

The structure and function of heavy metal transport

P1B-ATPases.

Biometals

20

233

248

41. SniegowskiPDDombrowskiPGFingermanE

2002

Saccharomyces cerevisiae and Saccharomyces paradoxus coexist in a

natural woodland site in North America and display different levels of

reproductive isolation from European conspecifics.

FEMS Yeast Res

1

299

306

42. LitiGPeruffoAJamesSARobertsINLouisEJ

2005

Inferences of evolutionary relationships from a population survey

of LTR-retrotransposons and telomeric-associated sequences in the

Saccharomyces sensu stricto complex.

Yeast

22

177

192

43. NovoMBigeyFBeyneEGaleoteVGavoryF

2009

Eukaryote-to-eukaryote gene transfer events revealed by the

genome sequence of the wine yeast Saccharomyces cerevisiae

EC1118.

Proc Natl Acad Sci U S A

106

16333

16338

44. WillJLKimHSClarkeJPainterJCFayJC

2010

Incipient balancing selection through adaptive loss of aquaporins

in natural Saccharomyces cerevisiae populations.

PLoS Genet

6

e1000893

doi:10.1371/journal.pgen.1000893

45. PanJPlantJAVoulvoulisNOatesCJIhlenfeldC

2010

Cadmium levels in Europe: implications for human

health.

Environ Geochem Health

32

1

12

46. KvitekDJWillJLGaschAP

2008

Variations in stress sensitivity and genomic expression in

diverse S. cerevisiae isolates.

PLoS Genet

4

e1000223

doi:10.1371/journal.pgen.1000223

47. LiYDLiangHGuZLinZGuanW

2009

Detecting positive selection in the budding yeast

genome.

J Evol Biol

22

2430

2437

48. FraserHBMosesAMSchadtEE

2010

Evidence for widespread adaptive evolution of gene expression in

budding yeast.

Proc Natl Acad Sci U S A

107

2977

2982

49. FayJCWittkoppPJ

2008

Evaluating the role of natural selection in the evolution of gene

regulation.

Heredity

100

191

199

50. WrayGA

2007

The evolutionary significance of cis-regulatory

mutations.

Nat Rev Genet

8

206

216

51. ChanYFMarksMEJonesFCVillarrealGJrShapiroMD

2010

Adaptive evolution of pelvic reduction in sticklebacks by

recurrent deletion of a Pitx1 enhancer.

Science

327

302

305

52. GompelNPrud'hommeBWittkoppPJKassnerVACarrollSB

2005

Chance caught on the wing: cis-regulatory evolution and the

origin of pigment patterns in Drosophila.

Nature

433

481

487

53. TurnerTLBourneECVon WettbergEJHuTTNuzhdinSV

2010

Population resequencing reveals local adaptation of Arabidopsis

lyrata to serpentine soils.

Nat Genet

42

260

263

54. TiroshIBarkaiNVerstrepenKJ

2009

Promoter architecture and the evolvability of gene

expression.

J Biol

8

95

55. NagornayaSSBabichTVPodgorskyVSBeharavANevoE

2003

Yeast interslope divergence in soils and plants of

“Evolution canyon”, Lower Nahal Oren, Mount Carmel,

Israel.

Israel Journal of Plant Sciences

51

55

57

56. ItoHFukudaYMurataKKimuraA

1983

Transformation of intact yeast cells treated with alkali

cations.

J Bacteriol

153

163

168

57. GuthrieCFinkG

2004

Guide to yeast genetics and molecular and cell biology

San Diego

Elsevier Academic Press

58. SaitouNNeiM

1987

The neighbor-joining method: a new method for reconstructing

phylogenetic trees.

Mol Biol Evol

4

406

425

59. FelsensteinJ

1985

Confidence-Limits on Phylogenies - an Approach Using the

Bootstrap.

Evolution

39

783

791

60. TamuraKNeiMKumarS

2004

Prospects for inferring very large phylogenies by using the

neighbor-joining method.

Proc Natl Acad Sci U S A

101

11030

11035

61. TamuraKDudleyJNeiMKumarS

2007

MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software

version 4.0.

Mol Biol Evol

24

1596

1599

62. LibradoPRozasJ

2009

DnaSP v5: a software for comprehensive analysis of DNA

polymorphism data.

Bioinformatics

25

1451

1452

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2011 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#