#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Triplet Repeat–Derived siRNAs Enhance RNA–Mediated Toxicity in a Drosophila Model for Myotonic Dystrophy


More than 20 human neurological and neurodegenerative diseases are caused by simple DNA repeat expansions; among these, non-coding CTG repeat expansions are the basis of myotonic dystrophy (DM1). Recent work, however, has also revealed that many human genes have anti-sense transcripts, raising the possibility that human trinucleotide expansion diseases may be comprised of pathogenic activities due both to a sense expanded-repeat transcript and to an anti-sense expanded-repeat transcript. We established a Drosophila model for DM1 and tested the role of interactions between expanded CTG transcripts and expanded CAG repeat transcripts. These studies revealed dramatically enhanced toxicity in flies co-expressing CTG with CAG expanded repeats. Expression of the two transcripts led to novel pathogenesis with the generation of dcr-2 and ago2-dependent 21-nt triplet repeat-derived siRNAs. These small RNAs targeted the expression of CAG-containing genes, such as Ataxin-2 and TATA binding protein (TBP), which bear long CAG repeats in both fly and man. These findings indicate that the generation of triplet repeat-derived siRNAs may dramatically enhance toxicity in human repeat expansion diseases in which anti-sense transcription occurs.


Vyšlo v časopise: Triplet Repeat–Derived siRNAs Enhance RNA–Mediated Toxicity in a Drosophila Model for Myotonic Dystrophy. PLoS Genet 7(3): e32767. doi:10.1371/journal.pgen.1001340
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001340

Souhrn

More than 20 human neurological and neurodegenerative diseases are caused by simple DNA repeat expansions; among these, non-coding CTG repeat expansions are the basis of myotonic dystrophy (DM1). Recent work, however, has also revealed that many human genes have anti-sense transcripts, raising the possibility that human trinucleotide expansion diseases may be comprised of pathogenic activities due both to a sense expanded-repeat transcript and to an anti-sense expanded-repeat transcript. We established a Drosophila model for DM1 and tested the role of interactions between expanded CTG transcripts and expanded CAG repeat transcripts. These studies revealed dramatically enhanced toxicity in flies co-expressing CTG with CAG expanded repeats. Expression of the two transcripts led to novel pathogenesis with the generation of dcr-2 and ago2-dependent 21-nt triplet repeat-derived siRNAs. These small RNAs targeted the expression of CAG-containing genes, such as Ataxin-2 and TATA binding protein (TBP), which bear long CAG repeats in both fly and man. These findings indicate that the generation of triplet repeat-derived siRNAs may dramatically enhance toxicity in human repeat expansion diseases in which anti-sense transcription occurs.


Zdroje

1. RanumLP

CooperTA

2006 RNA-mediated neuromuscular disorders. Annu Rev Neurosci 29 259 277

2. OrrHT

ZoghbiHY

2007 Trinucleotide Repeat Disorders. Annu Rev Neurosci

3. LiLB

BoniniNM

2010 Roles of trinucleotide-repeat RNA in neurological disease and degeneration. Trends Neurosci 33 292 298

4. BrookJD

McCurrachME

HarleyHG

BucklerAJ

ChurchD

1992 Molecular basis of myotonic dystrophy: Expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 68 799 808

5. FuYH

PizzutiA

FenwickRG

KingJ

RajnarayanS

1992 An unstable triplet repeat in a gene related to myotonic muscular-dystrophy. Science 255 1256 1258

6. PhilipsAV

TimchenkoLT

CooperTA

1998 Disruption of Splicing Regulated by a CUG-Binding Protein in Myotonic Dystrophy. Science 280 737 741

7. SavkurRS

PhilipsAV

CooperTA

2001 Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat Genet 29 40 47

8. MankodiA

TakahashiMP

JiangH

BeckCL

BowersWJ

2002 Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol Cell 10 35 44

9. RudnickiDD

HolmesSE

LinMW

ThorntonCA

RossCA

2007 Huntington's disease–like 2 is associated with CUG repeat-containing RNA foci. Ann Neurol 61 272 282

10. DaughtersRS

TuttleDL

GaoW

IkedaY

MoseleyML

2009 RNA gain-of-function in spinocerebellar ataxia type 8. PLoS Genet 5 e1000600 doi:10.1371/journal.pgen.1000600

11. KatayamaS

TomaruY

KasukawaT

WakiK

NakanishiM

2005 Antisense transcription in the mammalian transcriptome. Science 309 1564 1566

12. BatraR

CharizanisK

SwansonMS

2010 Partners in crime: bidirectional transcription in unstable microsatellite disease. Hum Mol Genet 19 R77 82

13. LaddPD

SmithLE

RabaiaNA

MooreJM

GeorgesSA

2007 An antisense transcript spanning the CGG repeat region of FMR1 is upregulated in premutation carriers but silenced in full mutation individuals. Hum Mol Genet 16 3174 3187

14. MoseleyML

ZuT

IkedaY

GaoW

MosemillerAK

2006 Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8. Nat Genet 38 758 769

15. ChoDH

ThienesCP

MahoneySE

AnalauE

FilippovaGN

2005 Antisense transcription and heterochromatin at the DM1 CTG repeats are constrained by CTCF. Mol Cell 20 483 489

16. DionV

WilsonJH

2009 Instability and chromatin structure of expanded trinucleotide repeats. Trends Genet 25 288 297

17. GeX

WuQ

JungY-C

ChenJ

WangSM

2006 A large quantity of novel human antisense transcripts detected by LongSAGE. Bioinformatics 22 2475 2479

18. HeY

VogelsteinB

VelculescuVE

PapadopoulosN

KinzlerKW

2008 The antisense transcriptomes of human cells. Science 322 1855 1857

19. ZoghbiHY

BotasJ

2002 Mouse and fly models of neurodegeneration. Trends Genet 18 463 471

20. MarshJL

ThompsonLM

2006 Drosophila in the study of neurodegenerative disease. Neuron 52 169 178

21. CauchiRJ

van den HeuvelM

2006 The fly as a model for neurodegenerative diseases: is it worth the jump? Neurodegener Dis 3 338 356

22. BilenJ

BoniniNM

2005 Drosophila as a model for human neurodegenerative disease. Annu Rev Genet 39 153 171

23. HouseleyJM

WangZ

BrockGJR

SolowayJ

ArteroR

2005 Myotonic dystrophy associated expanded CUG repeat muscleblind positive ribonuclear foci are not toxic to Drosophila. Human Molecular Genetics 14 873 883

24. de HaroM

Al-RamahiI

De GouyonB

UkaniL

RosaA

2006 MBNL1 and CUGBP1 modify expanded CUG-induced toxicity in a Drosophila model of myotonic dystrophy type 1. Human Molecular Genetics 15 2138 2145

25. Garcia-LopezA

MonferrerL

Garcia-AlcoverI

Vicente-CrespoM

Alvarez-AbrilMC

2008 Genetic and chemical modifiers of a CUG toxicity model in Drosophila. PLoS ONE 3 e1595 doi:10.1371/journal.pone.0001595

26. LiLB

YuZ

TengX

BoniniNM

2008 RNA toxicity is a component of ataxin-3 degeneration in Drosophila. Nature 453 1107 1111

27. LeeYS

NakaharaK

PhamJW

KimK

HeZ

2004 Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117 69 81

28. HorwichMD

LiC

MatrangaC

VaginV

FarleyG

2007 The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr Biol 17 1265 1272

29. CzechB

MaloneCD

ZhouR

StarkA

SchlingeheydeC

2008 An endogenous small interfering RNA pathway in Drosophila. Nature 453 798 802

30. MutsuddiM

MarshallCM

BenzowKA

KoobMD

RebayI

2004 The spinocerebellar ataxia 8 noncoding RNA causes neurodegeneration and associates with staufen in Drosophila. Curr Biol 14 302 308

31. SofolaOA

JinP

BotasJ

NelsonDL

2007 Argonaute-2-dependent rescue of a Drosophila model of FXTAS by FRAXE premutation repeat. Hum Mol Genet 16 2326 2332

32. SchwarzDS

HutvagnerG

DuT

XuZ

AroninN

2003 Asymmetry in the assembly of the RNAi enzyme complex. Cell 115 199 208

33. KhvorovaA

ReynoldsA

JayasenaSD

2003 Functional siRNAs and miRNAs exhibit strand bias. Cell 115 209 216

34. HutvagnerG

2005 Small RNA asymmetry in RNAi: function in RISC assembly and gene regulation. FEBS Lett 579 5850 5857

35. PeiY

TuschlT

2006 On the art of identifying effective and specific siRNAs. Nat Methods 3 670 676

36. MillerJW

UrbinatiCR

Teng-UmnuayP

StenbergMG

ByrneBJ

2000 Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy. Embo J 19 4439 4448

37. TimchenkoLT

MillerJW

TimchenkoNA

DeVoreDR

DatarKV

1996 Identification of a (CUG)n triplet repeat RNA-binding protein and its expression in myotonic dystrophy. Nucleic Acids Res 24 4407 4414

38. TianB

WhiteRJ

XiaT

WelleS

TurnerDH

2000 Expanded CUG repeat RNAs form hairpins that activate the double-stranded RNA-dependent protein kinase PKR. Rna 6 79 87

39. HoTH

SavkurRS

PoulosMG

ManciniMA

SwansonMS

2005 Colocalization of muscleblind with RNA foci is separable from mis-regulation of alternative splicing in myotonic dystrophy. J Cell Sci 118 2923 2933

40. JasinskaA

MichlewskiG

de MezerM

SobczakK

KozlowskiP

2003 Structures of trinucleotide repeats in human transcripts and their functional implications. Nucleic Acids Res 31 5463 5468

41. MaY

CreangaA

LumL

BeachyPA

2006 Prevalence of off-target effects in Drosophila RNA interference screens. Nature 443 359 363

42. LimJ

Crespo-BarretoJ

Jafar-NejadP

BowmanAB

RichmanR

2008 Opposing effects of polyglutamine expansion on native protein complexes contribute to SCA1. Nature 452 713 718

43. ThomasPSJr

FraleyGS

DamianV

WoodkeLB

ZapataF

2006 Loss of endogenous androgen receptor protein accelerates motor neuron degeneration and accentuates androgen insensitivity in a mouse model of X-linked spinal and bulbar muscular atrophy. Hum Mol Genet 15 2225 2238

44. KawajiH

NakamuraM

TakahashiY

SandelinA

KatayamaS

2008 Hidden layers of human small RNAs. BMC Genomics 9 157

45. YangN

KazazianHHJr

2006 L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells. Nat Struct Mol Biol 13 763 771

46. Ui-TeiK

ZennoS

MiyataY

SaigoK

2000 Sensitive assay of RNA interference in Drosophila and Chinese hamster cultured cells using firefly luciferase gene as target. FEBS Lett 479 79 82

47. CaplenNJ

FleenorJ

FireA

MorganRA

2000 dsRNA-mediated gene silencing in cultured Drosophila cells: a tissue culture model for the analysis of RNA interference. Gene 252 95 105

48. NakamuraK

JeongSY

UchiharaT

AnnoM

NagashimaK

2001 SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet 10 1441 1448

49. FreimanRN

TjianR

2002 Neurodegeneration. A glutamine-rich trail leads to transcription factors. Science 296 2149 2150

50. RileyBE

OrrHT

2006 Polyglutamine neurodegenerative diseases and regulation of transcription: assembling the puzzle. Genes Dev 20 2183 2192

51. KrolJ

FiszerA

MykowskaA

SobczakK

de MezerM

2007 Ribonuclease dicer cleaves triplet repeat hairpins into shorter repeats that silence specific targets. Mol Cell 25 575 586

52. OkamuraK

IshizukaA

SiomiH

SiomiMC

2004 Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev 18 1655 1666

53. SaitoK

SakaguchiY

SuzukiT

SuzukiT

SiomiH

2007 Pimet, the Drosophila homolog of HEN1, mediates 2′-O-methylation of Piwi- interacting RNAs at their 3′ ends. Genes Dev 21 1603 1608

54. DietzlG

ChenD

SchnorrerF

SuKC

BarinovaY

2007 A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448 151 156

55. CooperTA

2005 Use of minigene systems to dissect alternative splicing elements. Methods 37 331 340

56. KoobMD

MoseleyML

SchutLJ

BenzowKA

BirdTD

1999 An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nature Genetics 21 379 384

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2011 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#