Triplet Repeat–Derived siRNAs Enhance RNA–Mediated Toxicity in a Drosophila Model for Myotonic Dystrophy
More than 20 human neurological and neurodegenerative diseases are caused by simple DNA repeat expansions; among these, non-coding CTG repeat expansions are the basis of myotonic dystrophy (DM1). Recent work, however, has also revealed that many human genes have anti-sense transcripts, raising the possibility that human trinucleotide expansion diseases may be comprised of pathogenic activities due both to a sense expanded-repeat transcript and to an anti-sense expanded-repeat transcript. We established a Drosophila model for DM1 and tested the role of interactions between expanded CTG transcripts and expanded CAG repeat transcripts. These studies revealed dramatically enhanced toxicity in flies co-expressing CTG with CAG expanded repeats. Expression of the two transcripts led to novel pathogenesis with the generation of dcr-2 and ago2-dependent 21-nt triplet repeat-derived siRNAs. These small RNAs targeted the expression of CAG-containing genes, such as Ataxin-2 and TATA binding protein (TBP), which bear long CAG repeats in both fly and man. These findings indicate that the generation of triplet repeat-derived siRNAs may dramatically enhance toxicity in human repeat expansion diseases in which anti-sense transcription occurs.
Vyšlo v časopise:
Triplet Repeat–Derived siRNAs Enhance RNA–Mediated Toxicity in a Drosophila Model for Myotonic Dystrophy. PLoS Genet 7(3): e32767. doi:10.1371/journal.pgen.1001340
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1001340
Souhrn
More than 20 human neurological and neurodegenerative diseases are caused by simple DNA repeat expansions; among these, non-coding CTG repeat expansions are the basis of myotonic dystrophy (DM1). Recent work, however, has also revealed that many human genes have anti-sense transcripts, raising the possibility that human trinucleotide expansion diseases may be comprised of pathogenic activities due both to a sense expanded-repeat transcript and to an anti-sense expanded-repeat transcript. We established a Drosophila model for DM1 and tested the role of interactions between expanded CTG transcripts and expanded CAG repeat transcripts. These studies revealed dramatically enhanced toxicity in flies co-expressing CTG with CAG expanded repeats. Expression of the two transcripts led to novel pathogenesis with the generation of dcr-2 and ago2-dependent 21-nt triplet repeat-derived siRNAs. These small RNAs targeted the expression of CAG-containing genes, such as Ataxin-2 and TATA binding protein (TBP), which bear long CAG repeats in both fly and man. These findings indicate that the generation of triplet repeat-derived siRNAs may dramatically enhance toxicity in human repeat expansion diseases in which anti-sense transcription occurs.
Zdroje
1. RanumLP
CooperTA
2006 RNA-mediated neuromuscular disorders. Annu Rev Neurosci 29 259 277
2. OrrHT
ZoghbiHY
2007 Trinucleotide Repeat Disorders. Annu Rev Neurosci
3. LiLB
BoniniNM
2010 Roles of trinucleotide-repeat RNA in neurological disease and degeneration. Trends Neurosci 33 292 298
4. BrookJD
McCurrachME
HarleyHG
BucklerAJ
ChurchD
1992 Molecular basis of myotonic dystrophy: Expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 68 799 808
5. FuYH
PizzutiA
FenwickRG
KingJ
RajnarayanS
1992 An unstable triplet repeat in a gene related to myotonic muscular-dystrophy. Science 255 1256 1258
6. PhilipsAV
TimchenkoLT
CooperTA
1998 Disruption of Splicing Regulated by a CUG-Binding Protein in Myotonic Dystrophy. Science 280 737 741
7. SavkurRS
PhilipsAV
CooperTA
2001 Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat Genet 29 40 47
8. MankodiA
TakahashiMP
JiangH
BeckCL
BowersWJ
2002 Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol Cell 10 35 44
9. RudnickiDD
HolmesSE
LinMW
ThorntonCA
RossCA
2007 Huntington's disease–like 2 is associated with CUG repeat-containing RNA foci. Ann Neurol 61 272 282
10. DaughtersRS
TuttleDL
GaoW
IkedaY
MoseleyML
2009 RNA gain-of-function in spinocerebellar ataxia type 8. PLoS Genet 5 e1000600 doi:10.1371/journal.pgen.1000600
11. KatayamaS
TomaruY
KasukawaT
WakiK
NakanishiM
2005 Antisense transcription in the mammalian transcriptome. Science 309 1564 1566
12. BatraR
CharizanisK
SwansonMS
2010 Partners in crime: bidirectional transcription in unstable microsatellite disease. Hum Mol Genet 19 R77 82
13. LaddPD
SmithLE
RabaiaNA
MooreJM
GeorgesSA
2007 An antisense transcript spanning the CGG repeat region of FMR1 is upregulated in premutation carriers but silenced in full mutation individuals. Hum Mol Genet 16 3174 3187
14. MoseleyML
ZuT
IkedaY
GaoW
MosemillerAK
2006 Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8. Nat Genet 38 758 769
15. ChoDH
ThienesCP
MahoneySE
AnalauE
FilippovaGN
2005 Antisense transcription and heterochromatin at the DM1 CTG repeats are constrained by CTCF. Mol Cell 20 483 489
16. DionV
WilsonJH
2009 Instability and chromatin structure of expanded trinucleotide repeats. Trends Genet 25 288 297
17. GeX
WuQ
JungY-C
ChenJ
WangSM
2006 A large quantity of novel human antisense transcripts detected by LongSAGE. Bioinformatics 22 2475 2479
18. HeY
VogelsteinB
VelculescuVE
PapadopoulosN
KinzlerKW
2008 The antisense transcriptomes of human cells. Science 322 1855 1857
19. ZoghbiHY
BotasJ
2002 Mouse and fly models of neurodegeneration. Trends Genet 18 463 471
20. MarshJL
ThompsonLM
2006 Drosophila in the study of neurodegenerative disease. Neuron 52 169 178
21. CauchiRJ
van den HeuvelM
2006 The fly as a model for neurodegenerative diseases: is it worth the jump? Neurodegener Dis 3 338 356
22. BilenJ
BoniniNM
2005 Drosophila as a model for human neurodegenerative disease. Annu Rev Genet 39 153 171
23. HouseleyJM
WangZ
BrockGJR
SolowayJ
ArteroR
2005 Myotonic dystrophy associated expanded CUG repeat muscleblind positive ribonuclear foci are not toxic to Drosophila. Human Molecular Genetics 14 873 883
24. de HaroM
Al-RamahiI
De GouyonB
UkaniL
RosaA
2006 MBNL1 and CUGBP1 modify expanded CUG-induced toxicity in a Drosophila model of myotonic dystrophy type 1. Human Molecular Genetics 15 2138 2145
25. Garcia-LopezA
MonferrerL
Garcia-AlcoverI
Vicente-CrespoM
Alvarez-AbrilMC
2008 Genetic and chemical modifiers of a CUG toxicity model in Drosophila. PLoS ONE 3 e1595 doi:10.1371/journal.pone.0001595
26. LiLB
YuZ
TengX
BoniniNM
2008 RNA toxicity is a component of ataxin-3 degeneration in Drosophila. Nature 453 1107 1111
27. LeeYS
NakaharaK
PhamJW
KimK
HeZ
2004 Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117 69 81
28. HorwichMD
LiC
MatrangaC
VaginV
FarleyG
2007 The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr Biol 17 1265 1272
29. CzechB
MaloneCD
ZhouR
StarkA
SchlingeheydeC
2008 An endogenous small interfering RNA pathway in Drosophila. Nature 453 798 802
30. MutsuddiM
MarshallCM
BenzowKA
KoobMD
RebayI
2004 The spinocerebellar ataxia 8 noncoding RNA causes neurodegeneration and associates with staufen in Drosophila. Curr Biol 14 302 308
31. SofolaOA
JinP
BotasJ
NelsonDL
2007 Argonaute-2-dependent rescue of a Drosophila model of FXTAS by FRAXE premutation repeat. Hum Mol Genet 16 2326 2332
32. SchwarzDS
HutvagnerG
DuT
XuZ
AroninN
2003 Asymmetry in the assembly of the RNAi enzyme complex. Cell 115 199 208
33. KhvorovaA
ReynoldsA
JayasenaSD
2003 Functional siRNAs and miRNAs exhibit strand bias. Cell 115 209 216
34. HutvagnerG
2005 Small RNA asymmetry in RNAi: function in RISC assembly and gene regulation. FEBS Lett 579 5850 5857
35. PeiY
TuschlT
2006 On the art of identifying effective and specific siRNAs. Nat Methods 3 670 676
36. MillerJW
UrbinatiCR
Teng-UmnuayP
StenbergMG
ByrneBJ
2000 Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy. Embo J 19 4439 4448
37. TimchenkoLT
MillerJW
TimchenkoNA
DeVoreDR
DatarKV
1996 Identification of a (CUG)n triplet repeat RNA-binding protein and its expression in myotonic dystrophy. Nucleic Acids Res 24 4407 4414
38. TianB
WhiteRJ
XiaT
WelleS
TurnerDH
2000 Expanded CUG repeat RNAs form hairpins that activate the double-stranded RNA-dependent protein kinase PKR. Rna 6 79 87
39. HoTH
SavkurRS
PoulosMG
ManciniMA
SwansonMS
2005 Colocalization of muscleblind with RNA foci is separable from mis-regulation of alternative splicing in myotonic dystrophy. J Cell Sci 118 2923 2933
40. JasinskaA
MichlewskiG
de MezerM
SobczakK
KozlowskiP
2003 Structures of trinucleotide repeats in human transcripts and their functional implications. Nucleic Acids Res 31 5463 5468
41. MaY
CreangaA
LumL
BeachyPA
2006 Prevalence of off-target effects in Drosophila RNA interference screens. Nature 443 359 363
42. LimJ
Crespo-BarretoJ
Jafar-NejadP
BowmanAB
RichmanR
2008 Opposing effects of polyglutamine expansion on native protein complexes contribute to SCA1. Nature 452 713 718
43. ThomasPSJr
FraleyGS
DamianV
WoodkeLB
ZapataF
2006 Loss of endogenous androgen receptor protein accelerates motor neuron degeneration and accentuates androgen insensitivity in a mouse model of X-linked spinal and bulbar muscular atrophy. Hum Mol Genet 15 2225 2238
44. KawajiH
NakamuraM
TakahashiY
SandelinA
KatayamaS
2008 Hidden layers of human small RNAs. BMC Genomics 9 157
45. YangN
KazazianHHJr
2006 L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells. Nat Struct Mol Biol 13 763 771
46. Ui-TeiK
ZennoS
MiyataY
SaigoK
2000 Sensitive assay of RNA interference in Drosophila and Chinese hamster cultured cells using firefly luciferase gene as target. FEBS Lett 479 79 82
47. CaplenNJ
FleenorJ
FireA
MorganRA
2000 dsRNA-mediated gene silencing in cultured Drosophila cells: a tissue culture model for the analysis of RNA interference. Gene 252 95 105
48. NakamuraK
JeongSY
UchiharaT
AnnoM
NagashimaK
2001 SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet 10 1441 1448
49. FreimanRN
TjianR
2002 Neurodegeneration. A glutamine-rich trail leads to transcription factors. Science 296 2149 2150
50. RileyBE
OrrHT
2006 Polyglutamine neurodegenerative diseases and regulation of transcription: assembling the puzzle. Genes Dev 20 2183 2192
51. KrolJ
FiszerA
MykowskaA
SobczakK
de MezerM
2007 Ribonuclease dicer cleaves triplet repeat hairpins into shorter repeats that silence specific targets. Mol Cell 25 575 586
52. OkamuraK
IshizukaA
SiomiH
SiomiMC
2004 Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev 18 1655 1666
53. SaitoK
SakaguchiY
SuzukiT
SuzukiT
SiomiH
2007 Pimet, the Drosophila homolog of HEN1, mediates 2′-O-methylation of Piwi- interacting RNAs at their 3′ ends. Genes Dev 21 1603 1608
54. DietzlG
ChenD
SchnorrerF
SuKC
BarinovaY
2007 A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448 151 156
55. CooperTA
2005 Use of minigene systems to dissect alternative splicing elements. Methods 37 331 340
56. KoobMD
MoseleyML
SchutLJ
BenzowKA
BirdTD
1999 An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nature Genetics 21 379 384
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2011 Číslo 3
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Whole-Exome Re-Sequencing in a Family Quartet Identifies Mutations As the Cause of a Novel Skeletal Dysplasia
- Origin-Dependent Inverted-Repeat Amplification: A Replication-Based Model for Generating Palindromic Amplicons
- FUS Transgenic Rats Develop the Phenotypes of Amyotrophic Lateral Sclerosis and Frontotemporal Lobar Degeneration
- Limited dCTP Availability Accounts for Mitochondrial DNA Depletion in Mitochondrial Neurogastrointestinal Encephalomyopathy (MNGIE)