#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A Chaperone-Assisted Degradation Pathway Targets Kinetochore Proteins to Ensure Genome Stability


Cells are regularly exposed to stress conditions that may lead to protein misfolding. To cope with this challenge, molecular chaperones selectively target structurally perturbed proteins for degradation via the ubiquitin-proteasome pathway. In mammals the co-chaperone BAG-1 plays an important role in this system. BAG-1 has two orthologues, Bag101 and Bag102, in the fission yeast Schizosaccharomyces pombe. We show that both Bag101 and Bag102 interact with 26S proteasomes and Hsp70. By epistasis mapping we identify a mutant in the conserved kinetochore component Spc7 (Spc105/Blinkin) as a target for a quality control system that also involves, Hsp70, Bag102, the 26S proteasome, Ubc4 and the ubiquitin-ligases Ubr11 and San1. Accordingly, chromosome missegregation of spc7 mutant strains is alleviated by mutation of components in this pathway. In addition, we isolated a dominant negative version of the deubiquitylating enzyme, Ubp3, as a suppressor of the spc7-23 phenotype, suggesting that the proteasome-associated Ubp3 is required for this degradation system. Finally, our data suggest that the identified pathway is also involved in quality control of other kinetochore components and therefore likely to be a common degradation mechanism to ensure nuclear protein homeostasis and genome integrity.


Vyšlo v časopise: A Chaperone-Assisted Degradation Pathway Targets Kinetochore Proteins to Ensure Genome Stability. PLoS Genet 10(1): e32767. doi:10.1371/journal.pgen.1004140
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004140

Souhrn

Cells are regularly exposed to stress conditions that may lead to protein misfolding. To cope with this challenge, molecular chaperones selectively target structurally perturbed proteins for degradation via the ubiquitin-proteasome pathway. In mammals the co-chaperone BAG-1 plays an important role in this system. BAG-1 has two orthologues, Bag101 and Bag102, in the fission yeast Schizosaccharomyces pombe. We show that both Bag101 and Bag102 interact with 26S proteasomes and Hsp70. By epistasis mapping we identify a mutant in the conserved kinetochore component Spc7 (Spc105/Blinkin) as a target for a quality control system that also involves, Hsp70, Bag102, the 26S proteasome, Ubc4 and the ubiquitin-ligases Ubr11 and San1. Accordingly, chromosome missegregation of spc7 mutant strains is alleviated by mutation of components in this pathway. In addition, we isolated a dominant negative version of the deubiquitylating enzyme, Ubp3, as a suppressor of the spc7-23 phenotype, suggesting that the proteasome-associated Ubp3 is required for this degradation system. Finally, our data suggest that the identified pathway is also involved in quality control of other kinetochore components and therefore likely to be a common degradation mechanism to ensure nuclear protein homeostasis and genome integrity.


Zdroje

1. HartlFU, Hayer-HartlM (2009) Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol 16: 574–581 nsmb.1591 [pii];10.1038/nsmb.1591 [doi]

2. PowersET, MorimotoRI, DillinA, KellyJW, BalchWE (2009) Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 78: 959–991 10.1146/annurev.biochem.052308.114844 [doi]

3. KetternN, DreiseidlerM, TawoR, HohfeldJ (2010) Chaperone-assisted degradation: multiple paths to destruction. Biol Chem 391: 481–489 10.1515/BC.2010.058 [doi]

4. CyrDM, HohfeldJ, PattersonC (2002) Protein quality control: U-box-containing E3 ubiquitin ligases join the fold. Trends Biochem Sci 27: 368–375 S0968000402021254 [pii].

5. EsserC, AlbertiS, HohfeldJ (2004) Cooperation of molecular chaperones with the ubiquitin/proteasome system. Biochim Biophys Acta 1695: 171–188 S0167-4889(04)00236-8 [pii];10.1016/j.bbamcr.2004.09.020 [doi]

6. WiederkehrT, BukauB, BuchbergerA (2002) Protein turnover: a CHIP programmed for proteolysis. Curr Biol 12: R26–R28 S0960982201006443 [pii].

7. McClellanAJ, TamS, KaganovichD, FrydmanJ (2005) Protein quality control: chaperones culling corrupt conformations. Nat Cell Biol 7: 736–741 ncb0805-736 [pii];10.1038/ncb0805-736 [doi]

8. VembarSS, BrodskyJL (2008) One step at a time: endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol 9: 944–957 nrm2546 [pii];10.1038/nrm2546 [doi]

9. ArndtV, RogonC, HohfeldJ (2007) To be, or not to be–molecular chaperones in protein degradation. Cell Mol Life Sci 64: 2525–2541 10.1007/s00018-007-7188-6 [doi]

10. HohfeldJ, JentschS (1997) GrpE-like regulation of the hsc70 chaperone by the anti-apoptotic protein BAG-1. EMBO J 16: 6209–6216 10.1093/emboj/16.20.6209 [doi]

11. SondermannH, ScheuflerC, SchneiderC, HohfeldJ, HartlFU, et al. (2001) Structure of a Bag/Hsc70 complex: convergent functional evolution of Hsp70 nucleotide exchange factors. Science 291: 1553–1557 10.1126/science.291.5508.1553 [doi];291/5508/1553 [pii]

12. BrehmerD, RudigerS, GasslerCS, KlostermeierD, PackschiesL, et al. (2001) Tuning of chaperone activity of Hsp70 proteins by modulation of nucleotide exchange. Nat Struct Biol 8: 427–432 10.1038/87588 [doi];87588 [pii]

13. LudersJ, DemandJ, HohfeldJ (2000) The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome. J Biol Chem 275: 4613–4617.

14. DemandJ, AlbertiS, PattersonC, HohfeldJ (2001) Cooperation of a ubiquitin domain protein and an E3 ubiquitin ligase during chaperone/proteasome coupling. Curr Biol 11: 1569–1577 S0960-9822(01)00487-0 [pii].

15. MurataS, MinamiY, MinamiM, ChibaT, TanakaK (2001) CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein. EMBO Rep 2: 1133–1138 10.1093/embo-reports/kve246 [doi];kve246 [pii]

16. ConnellP, BallingerCA, JiangJ, WuY, ThompsonLJ, et al. (2001) The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat Cell Biol 3: 93–96 10.1038/35050618 [doi]

17. XuW, MarcuM, YuanX, MimnaughE, PattersonC, NeckersL (2002) Chaperone-dependent E3 ubiquitin ligase CHIP mediates a degradative pathway for c-ErbB2/Neu. Proc Natl Acad Sci U S A 99: 12847–12852 10.1073/pnas.202365899 [doi];202365899 [pii]

18. KriegenburgF, EllgaardL, Hartmann-PetersenR (2012) Molecular chaperones in targeting misfolded proteins for ubiquitin-dependent degradation. FEBS J 279: 532–542 10.1111/j.1742-4658.2011.08456.x [doi]

19. LampertF, WestermannS (2011) A blueprint for kinetochores - new insights into the molecular mechanics of cell division. Nat Rev Mol Cell Biol 12: 407–412 nrm3133 [pii];10.1038/nrm3133 [doi]

20. KerresA, JakopecV, FleigU (2007) The conserved Spc7 protein is required for spindle integrity and links kinetochore complexes in fission yeast. Mol Biol Cell 18: 2441–2454 E06-08-0738 [pii];10.1091/mbc.E06-08-0738 [doi]

21. SchauberC, ChenL, TongaonkarP, VegaI, LambertsonD, et al. (1998) Rad23 links DNA repair to the ubiquitin/proteasome pathway. Nature 391: 715–718 10.1038/35661 [doi]

22. ElsasserS, GaliRR, SchwickartM, LarsenCN, LeggettDS, et al. (2002) Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nat Cell Biol 4: 725–730 10.1038/ncb845 [doi];ncb845 [pii]

23. SaekiY, SoneT, Toh-eA, YokosawaH (2002) Identification of ubiquitin-like protein-binding subunits of the 26S proteasome. Biochem Biophys Res Commun 296: 813–819 S0006291X02020028 [pii].

24. AndersenKM, JensenC, KriegenburgF, LauridsenAM, GordonC, et al. (2011) Txl1 and Txc1 are co-factors of the 26S proteasome in fission yeast. Antioxid Redox Signal 14: 1601–1608 10.1089/ars.2010.3329 [doi]

25. RoguevA, WirenM, WeissmanJS, KroganNJ (2007) High-throughput genetic interaction mapping in the fission yeast Schizosaccharomyces pombe. Nat Methods 4: 861–866 nmeth1098 [pii];10.1038/nmeth1098 [doi]

26. KerresA, Vietmeier-DeckerC, OrtizJ, KarigI, BeuterC, et al. (2004) The fission yeast kinetochore component Spc7 associates with the EB1 family member Mal3 and is required for kinetochore-spindle association. Mol Biol Cell 15: 5255–5267 10.1091/mbc.E04-06-0443 [doi];E04-06-0443 [pii]

27. HayashiA, AsakawaH, HaraguchiT, HiraokaY (2006) Reconstruction of the kinetochore during meiosis in fission yeast Schizosaccharomyces pombe. Mol Biol Cell 17: 5173–5184 E06-05-0388 [pii];10.1091/mbc.E06-05-0388 [doi]

28. JakopecV, TopolskiB, FleigU (2012) Sos7, an essential component of the conserved Schizosaccharomyces pombe Ndc80-MIND-Spc7 complex, identifies a new family of fungal kinetochore proteins. Mol Cell Biol 32: 3308–3320 MCB.00212-12 [pii];10.1128/MCB.00212-12 [doi]

29. KimYC, DeMartinoGN (2011) C termini of proteasomal ATPases play nonequivalent roles in cellular assembly of mammalian 26 S proteasome. J Biol Chem 286: 26652–26666 M111.246793 [pii];10.1074/jbc.M111.246793 [doi].

30. TakedaK, MoriA, YanagidaM (2011) Identification of genes affecting the toxicity of anti-cancer drug bortezomib by genome-wide screening in S. pombe. PLoS One 6: e22021 10.1371/journal.pone.0022021 [doi];PONE-D-11-04918 [pii]

31. ChenD, TooneWM, MataJ, LyneR, BurnsG, et al. (2003) Global transcriptional responses of fission yeast to environmental stress. Mol Biol Cell 14: 214–229 10.1091/mbc.E02-08-0499 [doi]

32. MatsuyamaA, AraiR, YashirodaY, ShiraiA, KamataA, et al. (2006) ORFeome cloning and global analysis of protein localization in the fission yeast Schizosaccharomyces pombe. Nat Biotechnol 24: 841–847 nbt1222 [pii];10.1038/nbt1222 [doi]

33. MaoP, SmerdonMJ (2010) Yeast deubiquitinase Ubp3 interacts with the 26 S proteasome to facilitate Rad4 degradation. J Biol Chem 285: 37542–37550 M110.170175 [pii];10.1074/jbc.M110.170175 [doi].

34. MazumdarT, GorgunFM, ShaY, TyryshkinA, ZengS, et al. (2010) Regulation of NF-{kappa}B activity and inducible nitric oxide synthase by regulatory particle non-ATPase subunit 13 (Rpn13). Proc Natl Acad Sci U S A 107: 13854–13859 0913495107 [pii];10.1073/pnas.0913495107 [doi]

35. LeeMJ, LeeBH, HannaJ, KingRW, FinleyD (2011) Trimming of ubiquitin chains by proteasome-associated deubiquitinating enzymes. Mol Cell Proteomics 10: R110 R110.003871 [pii];10.1074/mcp.R110.003871 [doi]

36. LiuX, McLeodI, AndersonS, YatesJRIII, HeX (2005) Molecular analysis of kinetochore architecture in fission yeast. EMBO J 24: 2919–2930 7600762 [pii];10.1038/sj.emboj.7600762 [doi]

37. BurrackLS, BermanJ (2012) Flexibility of centromere and kinetochore structures. Trends Genet 28: 204–212 S0168-9525(12)00026-1 [pii];10.1016/j.tig.2012.02.003 [doi]

38. MakhnevychT, HouryWA (2012) The role of Hsp90 in protein complex assembly. Biochim Biophys Acta 1823: 674–682 S0167-4889(11)00259-X [pii];10.1016/j.bbamcr.2011.09.001 [doi]

39. MeachamGC, PattersonC, ZhangW, YoungerJM, CyrDM (2001) The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat Cell Biol 3: 100–105 10.1038/35050509 [doi]

40. AkiyoshiB, NelsonCR, DugganN, CetoS, RanishJA, et al. (2013) The mub1/ubr2 ubiquitin ligase complex regulates the conserved dsn1 kinetochore protein. PLoS Genet 9: e1003216 10.1371/journal.pgen.1003216 [doi];PGENETICS-D-12-01514 [pii]

41. FurthN, GertmanO, ShiberA, AlfassyOS, CohenI, et al. (2011) Exposure of bipartite hydrophobic signal triggers nuclear quality control of Ndc10 at the endoplasmic reticulum/nuclear envelope. Mol Biol Cell 22: 4726–4739 mbc.E11-05-0463 [pii];10.1091/mbc.E11-05-0463 [doi]

42. RavidT, KreftSG, HochstrasserM (2006) Membrane and soluble substrates of the Doa10 ubiquitin ligase are degraded by distinct pathways. EMBO J 25: 533–543 7600946 [pii];10.1038/sj.emboj.7600946 [doi]

43. SummersDW, WolfeKJ, RenHY, CyrDM (2013) The Type II Hsp40 Sis1 cooperates with Hsp70 and the E3 ligase Ubr1 to promote degradation of terminally misfolded cytosolic protein. PLoS One 8: e52099 10.1371/journal.pone.0052099 [doi];PONE-D-12-30428 [pii]

44. RosenbaumJC, FredricksonEK, OeserML, Garrett-EngeleCM, LockeMN, et al. (2011) Disorder targets misorder in nuclear quality control degradation: a disordered ubiquitin ligase directly recognizes its misfolded substrates. Mol Cell 41: 93–106 S1097-2765(10)00960-3 [pii];10.1016/j.molcel.2010.12.004 [doi]

45. GuerrieroCJ, WeiberthKF, BrodskyJL (2013) Hsp70 targets a cytoplasmic quality control substrate to the San1p ubiquitin ligase. J Biol Chem 288(25): 18506–20 M113.475905 [pii];10.1074/jbc.M113.475905 [doi]

46. HeckJW, CheungSK, HamptonRY (2010) Cytoplasmic protein quality control degradation mediated by parallel actions of the E3 ubiquitin ligases Ubr1 and San1. Proc Natl Acad Sci U S A 107: 1106–1111 0910591107 [pii];10.1073/pnas.0910591107 [doi]

47. GotzR, KramerBW, CamareroG, RappUR (2004) BAG-1 haplo-insufficiency impairs lung tumorigenesis. BMC Cancer 4: 85 1471-2407-4-85 [pii];10.1186/1471-2407-4-85 [doi]

48. WilkinsonCR, SeegerM, Hartmann-PetersenR, StoneM, WallaceM, et al. (2001) Proteins containing the UBA domain are able to bind to multi-ubiquitin chains. Nat Cell Biol 3: 939–943 10.1038/ncb1001-939 [doi];ncb1001-939 [pii]

49. WilkinsonCR, WallaceM, MorphewM, PerryP, AllshireR, et al. (1998) Localization of the 26S proteasome during mitosis and meiosis in fission yeast. EMBO J 17: 6465–6476 10.1093/emboj/17.22.6465 [doi]

50. Reyes-TurcuFE, VentiiKH, WilkinsonKD (2009) Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 78: 363–397 10.1146/annurev.biochem.78.082307.091526 [doi]

51. KimDU, HaylesJ, KimD, WoodV, ParkHO, et al. (2010) Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe. Nat Biotechnol 28: 617–623 nbt.1628 [pii];10.1038/nbt.1628 [doi]

52. MorenoS, KlarA, NurseP (1991) Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol 194: 795–823.

53. BahlerJ, WuJQ, LongtineMS, ShahNG, McKenzieAIII, et al. (1998) Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14: 943–951 10.1002/(SICI)1097-0061(199807)14:10<943::AID-YEA292>3.0.CO;2-Y [pii];10.1002/(SICI)1097-0061(199807)14:10<943::AID-YEA292>3.0.CO;2-Y [doi]

54. MatsuyamaA, ShiraiA, YashirodaY, KamataA, HorinouchiS, et al. (2004) pDUAL, a multipurpose, multicopy vector capable of chromosomal integration in fission yeast. Yeast 21: 1289–1305 10.1002/yea.1181 [doi]

55. MorenoMB, DuranA, RibasJC (2000) A family of multifunctional thiamine-repressible expression vectors for fission yeast. Yeast 16: 861–872 10.1002/1097-0061(20000630)16:9<861::AID-YEA577>3.0.CO;2-9 [pii];10.1002/1097-0061(20000630)16:9<861::AID-YEA577>3.0.CO;2-9 [doi]

56. PenneyM, SamejimaI, WilkinsonCR, McInernyCJ, MathiassenSG, et al. (2012) Fission yeast 26S proteasome mutants are multi-drug resistant due to stabilization of the Pap1 transcription factor. PLoS One 7: e50796 10.1371/journal.pone.0050796 [doi];PONE-D-12-28145 [pii]

57. MatsuoY, KishimotoH, TanaeK, KitamuraK, KatayamaS, et al. (2011) Nuclear protein quality is regulated by the ubiquitin-proteasome system through the activity of Ubc4 and San1 in fission yeast. J Biol Chem 286: 13775–13790 M110.169953 [pii];10.1074/jbc.M110.169953 [doi]

58. AndersenKM, MadsenL, PragS, JohnsenAH, SempleCA, et al. (2009) Thioredoxin Txnl1/TRP32 is a redox-active cofactor of the 26 S proteasome. J Biol Chem 284: 15246–15254 M900016200 [pii];10.1074/jbc.M900016200 [doi]

59. Hartmann-PetersenR, WallaceM, HofmannK, KochG, JohnsenAH, et al. (2004) The Ubx2 and Ubx3 cofactors direct Cdc48 activity to proteolytic and nonproteolytic ubiquitin-dependent processes. Curr Biol 14: 824–828 10.1016/j.cub.2004.04.029 [doi];S0960982204002994 [pii]

60. GrallertA, BeuterC, CravenRA, BagleyS, WilksD, et al. (2006) S. pombe CLASP needs dynein, not EB1 or CLIP170, to induce microtubule instability and slows polymerization rates at cell tips in a dynein-dependent manner. Genes Dev 20: 2421–2436 20/17/2421 [pii];10.1101/gad.381306 [doi]

61. TranPT, PaolettiA, ChangF (2004) Imaging green fluorescent protein fusions in living fission yeast cells. Methods 33: 220–225 10.1016/j.ymeth.2003.11.017 [doi];S1046202303003165 [pii]

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#