#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

New MicroRNAs in —Birth, Death and Cycles of Adaptive Evolution


The origin and evolution of new microRNAs (miRNAs) is important because they can impact the transcriptome broadly. As miRNAs can potentially emerge constantly and rapidly, their rates of birth and evolution have been extensively debated. However, most new miRNAs identified appear not to be biologically significant. After an extensive search, we identified 12 new miRNAs that emerged de novo in Drosophila melanogaster in the last 4 million years (Myrs) and have been evolving adaptively. Unexpectedly, even though they are adaptively evolving at birth, more than 94% of such new miRNAs disappear over time. They provide selective advantages, but only for a transient evolutionary period. After 30 Myrs, all surviving miRNAs make the transition from the adaptive phase of rapid evolution to the conservative phase of slow evolution, apparently becoming integrated into the transcriptional network. During this transition, the expression shifts from being tissue-specific, predominantly in testes and larval brain/gonads/imaginal discs, to a broader distribution in many other tissues. Interestingly, a measurable fraction (20–30%) of these conservatively evolving miRNAs experience “evolutionary rejuvenation” and begin to evolve rapidly again. These rejuvenated miRNAs then start another cycle of adaptive – conservative evolution. In conclusion, the selective advantages driving evolution of miRNAs are themselves evolving, and sometimes changing direction, which highlights the regulatory roles of miRNAs.


Vyšlo v časopise: New MicroRNAs in —Birth, Death and Cycles of Adaptive Evolution. PLoS Genet 10(1): e32767. doi:10.1371/journal.pgen.1004096
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004096

Souhrn

The origin and evolution of new microRNAs (miRNAs) is important because they can impact the transcriptome broadly. As miRNAs can potentially emerge constantly and rapidly, their rates of birth and evolution have been extensively debated. However, most new miRNAs identified appear not to be biologically significant. After an extensive search, we identified 12 new miRNAs that emerged de novo in Drosophila melanogaster in the last 4 million years (Myrs) and have been evolving adaptively. Unexpectedly, even though they are adaptively evolving at birth, more than 94% of such new miRNAs disappear over time. They provide selective advantages, but only for a transient evolutionary period. After 30 Myrs, all surviving miRNAs make the transition from the adaptive phase of rapid evolution to the conservative phase of slow evolution, apparently becoming integrated into the transcriptional network. During this transition, the expression shifts from being tissue-specific, predominantly in testes and larval brain/gonads/imaginal discs, to a broader distribution in many other tissues. Interestingly, a measurable fraction (20–30%) of these conservatively evolving miRNAs experience “evolutionary rejuvenation” and begin to evolve rapidly again. These rejuvenated miRNAs then start another cycle of adaptive – conservative evolution. In conclusion, the selective advantages driving evolution of miRNAs are themselves evolving, and sometimes changing direction, which highlights the regulatory roles of miRNAs.


Zdroje

1. BartelDP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297.

2. BushatiN, CohenSM (2007) microRNA functions. Annu Rev Cell Dev Biol 23: 175–205.

3. KimVN, HanJ, SiomiMC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10: 126–139.

4. BartelDP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136: 215–233.

5. LewisBP, BurgeCB, BartelDP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 15–20.

6. HornsteinE, ShomronN (2006) Canalization of development by microRNAs. Nat Genet 38 Suppl: S20–24.

7. WuCI, ShenY, TangT (2009) Evolution under canalization and the dual roles of microRNAs: a hypothesis. Genome Res 19: 734–743.

8. WaddingtonC (1942) Canalization of development and the inheritance of acquired characters. Nature 150: 563–565.

9. WaddingtonC (1960) Experiments on canalizing selection. Genet Res 1: 140–150.

10. RutherfordSL, LindquistS (1998) Hsp90 as a capacitor for morphological evolution. Nature 396: 336–342.

11. QueitschC, SangsterTA, LindquistS (2002) Hsp90 as a capacitor of phenotypic variation. Nature 417: 618–624.

12. LuJ, ShenY, WuQ, KumarS, HeB, et al. (2008) The birth and death of microRNA genes in Drosophila. Nat Genet 40: 351–355.

13. MeunierJ, LemoineF, SoumillonM, LiechtiA, WeierM, et al. (2013) Birth and expression evolution of mammalian microRNA genes. Genome Res 23: 34–45.

14. BentwichI, AvnielA, KarovY, AharonovR, GiladS, et al. (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37: 766–770.

15. ZhouQ, ZhangG, ZhangY, XuS, ZhaoR, et al. (2008) On the origin of new genes in Drosophila. Genome Res 18: 1446–1455.

16. BerezikovE, LiuN, FlyntAS, HodgesE, RooksM, et al. (2010) Evolutionary flux of canonical microRNAs and mirtrons in Drosophila. Nat Genet 42: 6–9 author reply 9-10.

17. LuJ, ShenY, CarthewRW, WangSM, WuCI (2010) Reply to “Evolutionary flux of canonical microRNAs and mirtrons in Drosophila”. Nat Genet 42: 9–10.

18. RubyJG, StarkA, JohnstonWK, KellisM, BartelDP, et al. (2007) Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. Genome Res 17: 1850–1864.

19. ChungWJ, OkamuraK, MartinR, LaiEC (2008) Endogenous RNA interference provides a somatic defense against Drosophila transposons. Curr Biol 18: 795–802.

20. CzechB, MaloneCD, ZhouR, StarkA, SchlingeheydeC, et al. (2008) An endogenous small interfering RNA pathway in Drosophila. Nature 453: 798–802.

21. LauNC, RobineN, MartinR, ChungWJ, NikiY, et al. (2009) Abundant primary piRNAs, endo-siRNAs, and microRNAs in a Drosophila ovary cell line. Genome Res 19: 1776–1785.

22. RozhkovNV, AravinAA, ZelentsovaES, SchostakNG, SachidanandamR, et al. (2010) Small RNA-based silencing strategies for transposons in the process of invading Drosophila species. RNA 16: 1634–1645.

23. BerezikovE, RobineN, SamsonovaA, WestholmJO, NaqviA, et al. (2011) Deep annotation of Drosophila melanogaster microRNAs yields insights into their processing, modification, and emergence. Genome Res 21: 203–215.

24. LiS, MeadEA, LiangS, TuZ (2009) Direct sequencing and expression analysis of a large number of miRNAs in Aedes aegypti and a multi-species survey of novel mosquito miRNAs. BMC Genomics 10: 581.

25. SkalskyRL, VanlandinghamDL, ScholleF, HiggsS, CullenBR (2010) Identification of microRNAs expressed in two mosquito vectors, Aedes albopictus and Culex quinquefasciatus. BMC Genomics 11: 119.

26. KozomaraA, Griffiths-JonesS (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39: D152–157.

27. ClarkAG, EisenMB, SmithDR, BergmanCM, OliverB, et al. (2007) Evolution of genes and genomes on the Drosophila phylogeny. Nature 450: 203–218.

28. BerezikovE (2011) Evolution of microRNA diversity and regulation in animals. Nat Rev Genet 12: 846–860.

29. ZhangR, PengY, WangW, SuB (2007) Rapid evolution of an X-linked microRNA cluster in primates. Genome Res 17: 612–617.

30. LiJ, LiuY, DongD, ZhangZ (2010) Evolution of an X-linked primate-specific micro RNA cluster. Mol Biol Evol 27: 671–683.

31. FayJC, WuCI (2003) Sequence divergence, functional constraint, and selection in protein evolution. Annu Rev Genomics Hum Genet 4: 213–235.

32. McDonaldJH, KreitmanM (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351: 652–654.

33. LuJ, FuY, KumarS, ShenY, ZengK, et al. (2008) Adaptive evolution of newly emerged micro-RNA genes in Drosophila. Mol Biol Evol 25: 929–938.

34. FayJC, WyckoffGJ, WuCI (2002) Testing the neutral theory of molecular evolution with genomic data from Drosophila. Nature 415: 1024–1026.

35. FayJC, WuCI (2000) Hitchhiking under positive Darwinian selection. Genetics 155: 1405–1413.

36. ZengK, FuYX, ShiS, WuCI (2006) Statistical tests for detecting positive selection by utilizing high-frequency variants. Genetics 174: 1431–1439.

37. WuCI, HollocherH, BegunDJ, AquadroCF, XuY, et al. (1995) Sexual isolation in Drosophila melanogaster: a possible case of incipient speciation. Proc Natl Acad Sci U S A 92: 2519–2523.

38. HollocherH, TingCT, WuML, WuCI (1997) Incipient speciation by sexual isolation in Drosophila melanogaster: extensive genetic divergence without reinforcement. Genetics 147: 1191–1201.

39. TingCT, TakahashiA, WuCI (2001) Incipient speciation by sexual isolation in Drosophila: concurrent evolution at multiple loci. Proc Natl Acad Sci U S A 98: 6709–6713.

40. WeirBS, CockerhamCC (1984) Estimating F-Statistics for the analysis of population structure. Evolution 38: 1358–1370.

41. PoolJE, Corbett-DetigRB, SuginoRP, StevensKA, CardenoCM, et al. (2012) Population Genomics of sub-saharan Drosophila melanogaster: African diversity and non-African admixture. PLoS Genet 8: e1003080.

42. GrimsonA, SrivastavaM, FaheyB, WoodcroftBJ, ChiangHR, et al. (2008) Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature 455: 1193–1197.

43. LiangH, LiWH (2009) Lowly expressed human microRNA genes evolve rapidly. Mol Biol Evol 26: 1195–1198.

44. NozawaM, MiuraS, NeiM (2010) Origins and evolution of microRNA genes in Drosophila species. Genome Biol Evol 2: 180–189.

45. HeimbergAM, SempereLF, MoyVN, DonoghuePC, PetersonKJ (2008) MicroRNAs and the advent of vertebrate morphological complexity. Proc Natl Acad Sci U S A 105: 2946–2950.

46. YokoyamaS, MeanyA, WilkensH, YokoyamaR (1995) Initial mutational steps toward loss of opsin gene function in cavefish. Mol Biol Evol 12: 527–532.

47. MaereS, De BodtS, RaesJ, CasneufT, Van MontaguM, et al. (2005) Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci U S A 102: 5454–5459.

48. LevineMT, JonesCD, KernAD, LindforsHA, BegunDJ (2006) Novel genes derived from noncoding DNA in Drosophila melanogaster are frequently X-linked and exhibit testis-biased expression. Proc Natl Acad Sci U S A 103: 9935–9939.

49. DingY, ZhaoL, YangS, JiangY, ChenY, et al. (2010) A young Drosophila duplicate gene plays essential roles in spermatogenesis by regulating several Y-linked male fertility genes. PLoS Genet 6: e1001255.

50. KaessmannH (2010) Origins, evolution, and phenotypic impact of new genes. Genome Res 20: 1313–1326.

51. WuDD, IrwinDM, ZhangYP (2011) De novo origin of human protein-coding genes. PLoS Genet 7: e1002379.

52. ChenS, NiX, KrinskyBH, ZhangYE, VibranovskiMD, et al. (2012) Reshaping of global gene expression networks and sex-biased gene expression by integration of a young gene. EMBO J 31: 2798–2809.

53. YehSD, DoT, ChanC, CordovaA, CarranzaF, et al. (2012) Functional evidence that a recently evolved Drosophila sperm-specific gene boosts sperm competition. Proc Natl Acad Sci U S A 109: 2043–2048.

54. RossBD, RosinL, ThomaeAW, HiattMA, VermaakD, et al. (2013) Stepwise evolution of essential centromere function in a Drosophila neogene. Science 340: 1211–1214.

55. WuCI, DavisAW (1993) Evolution of postmating reproductive isolation: the composite nature of Haldane's rule and its genetic bases. Am Nat 142: 187–212.

56. WyckoffGJ, WangW, WuCI (2000) Rapid evolution of male reproductive genes in the descent of man. Nature 403: 304–309.

57. WuCI, TingCT (2004) Genes and speciation. Nat Rev Genet 5: 114–122.

58. SwansonWJ, VacquierVD (2002) The rapid evolution of reproductive proteins. Nat Rev Genet 3: 137–144.

59. GlazovEA, McWilliamS, BarrisWC, DalrympleBP (2008) Origin, evolution, and biological role of miRNA cluster in DLK-DIO3 genomic region in placental mammals. Mol Biol Evol 25: 939–948.

60. MarcoA, NinovaM, RonshaugenM, Griffiths-JonesS (2013) Clusters of microRNAs emerge by new hairpins in existing transcripts. Nucleic Acids Res 41: 7745–7752.

61. ShenY, LvY, HuangL, LiuW, WenM, et al. (2011) Testing hypotheses on the rate of molecular evolution in relation to gene expression using microRNAs. Proc Natl Acad Sci U S A 108: 15942–15947.

62. RubyJG, JanCH, BartelDP (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448: 83–86.

63. LangmeadB, TrapnellC, PopM, SalzbergSL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10: R25.

64. FriedlanderMR, ChenW, AdamidiC, MaaskolaJ, EinspanierR, et al. (2008) Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 26: 407–415.

65. GauntMW, MilesMA (2002) An insect molecular clock dates the origin of the insects and accords with palaeontological and biogeographic landmarks. Mol Biol Evol 19: 748–761.

66. BolshakovVN, TopalisP, BlassC, KokozaE, della TorreA, et al. (2002) A comparative genomic analysis of two distant diptera, the fruit fly, Drosophila melanogaster, and the malaria mosquito, Anopheles gambiae. Genome Res 12: 57–66.

67. KentWJ (2002) BLAT–the BLAST-like alignment tool. Genome Res 12: 656–664.

68. EdgarRC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797.

69. TamuraK, PetersonD, PetersonN, StecherG, NeiM, et al. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739.

70. HofackerIL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31: 3429–3431.

71. StephensM, DonnellyP (2003) A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 73: 1162–1169.

72. KimuraM (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120.

73. WattersonGA (1975) On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7: 256–276.

74. TajimaF (1983) Evolutionary relationship of DNA sequences in finite populations. Genetics 105: 437–460.

75. MackayTF, RichardsS, StoneEA, BarbadillaA, AyrolesJF, et al. (2012) The Drosophila melanogaster Genetic Reference Panel. Nature 482: 173–178.

76. BenjaminiY, HochbergY (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Statist Soc Ser B 57: 289–300.

77. NeiM, GojoboriT (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3: 418–426.

78. HuangDW, ShermanBT, LempickiRA (2008) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protocols 4: 44–57.

79. MesserPW, PetrovDA (2013) Frequent adaptation and the McDonald-Kreitman test. Proc Natl Acad Sci U S A 110: 8615–8620.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#