#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

DNA Methylation Changes Separate Allergic Patients from Healthy Controls and May Reflect Altered CD4 T-Cell Population Structure


Altered DNA methylation patterns in CD4+ T-cells indicate the importance of epigenetic mechanisms in inflammatory diseases. However, the identification of these alterations is complicated by the heterogeneity of most inflammatory diseases. Seasonal allergic rhinitis (SAR) is an optimal disease model for the study of DNA methylation because of its well-defined phenotype and etiology. We generated genome-wide DNA methylation (Npatients = 8, Ncontrols = 8) and gene expression (Npatients = 9, Ncontrols = 10) profiles of CD4+ T-cells from SAR patients and healthy controls using Illumina's HumanMethylation450 and HT-12 microarrays, respectively. DNA methylation profiles clearly and robustly distinguished SAR patients from controls, during and outside the pollen season. In agreement with previously published studies, gene expression profiles of the same samples failed to separate patients and controls. Separation by methylation (Npatients = 12, Ncontrols = 12), but not by gene expression (Npatients = 21, Ncontrols = 21) was also observed in an in vitro model system in which purified PBMCs from patients and healthy controls were challenged with allergen. We observed changes in the proportions of memory T-cell populations between patients (Npatients = 35) and controls (Ncontrols = 12), which could explain the observed difference in DNA methylation. Our data highlight the potential of epigenomics in the stratification of immune disease and represents the first successful molecular classification of SAR using CD4+ T cells.


Vyšlo v časopise: DNA Methylation Changes Separate Allergic Patients from Healthy Controls and May Reflect Altered CD4 T-Cell Population Structure. PLoS Genet 10(1): e32767. doi:10.1371/journal.pgen.1004059
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004059

Souhrn

Altered DNA methylation patterns in CD4+ T-cells indicate the importance of epigenetic mechanisms in inflammatory diseases. However, the identification of these alterations is complicated by the heterogeneity of most inflammatory diseases. Seasonal allergic rhinitis (SAR) is an optimal disease model for the study of DNA methylation because of its well-defined phenotype and etiology. We generated genome-wide DNA methylation (Npatients = 8, Ncontrols = 8) and gene expression (Npatients = 9, Ncontrols = 10) profiles of CD4+ T-cells from SAR patients and healthy controls using Illumina's HumanMethylation450 and HT-12 microarrays, respectively. DNA methylation profiles clearly and robustly distinguished SAR patients from controls, during and outside the pollen season. In agreement with previously published studies, gene expression profiles of the same samples failed to separate patients and controls. Separation by methylation (Npatients = 12, Ncontrols = 12), but not by gene expression (Npatients = 21, Ncontrols = 21) was also observed in an in vitro model system in which purified PBMCs from patients and healthy controls were challenged with allergen. We observed changes in the proportions of memory T-cell populations between patients (Npatients = 35) and controls (Ncontrols = 12), which could explain the observed difference in DNA methylation. Our data highlight the potential of epigenomics in the stratification of immune disease and represents the first successful molecular classification of SAR using CD4+ T cells.


Zdroje

1. BaranziniSE, MudgeJ, van VelkinburghJC, KhankhanianP, KhrebtukovaI, et al. (2010) Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis. Nature 464: 1351–1356.

2. GervinK, VigelandMD, MattingsdalM, HammeroM, NygardH, et al. (2012) DNA methylation and gene expression changes in monozygotic twins discordant for psoriasis: identification of epigenetically dysregulated genes. PLoS Genet 8: e1002454.

3. GreerJM, McCombePA (2012) The role of epigenetic mechanisms and processes in autoimmune disorders. Biologics 6: 307–327.

4. WangH, BarrenasF, BruhnS, MobiniR, BensonM (2009) Increased IFN-gamma activity in seasonal allergic rhinitis is decreased by corticosteroid treatment. J Allergy Clin Immunol 124: 1360–1362.

5. Worldwide variation in prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and atopic eczema: ISAAC. The International Study of Asthma and Allergies in Childhood (ISAAC) Steering Committee. Lancet 351: 1225–1232.

6. SjogrenAK, BarrenasF, MuraroA, GustafssonM, SaetromP, et al. (2012) Monozygotic twins discordant for intermittent allergic rhinitis differ in mRNA and protein levels. Allergy 67: 831–833.

7. KannoY, VahediG, HiraharaK, SingletonK, O'SheaJJ (2012) Transcriptional and epigenetic control of T helper cell specification: molecular mechanisms underlying commitment and plasticity. Annu Rev Immunol 30: 707–731.

8. LeeJC, LyonsPA, McKinneyEF, SowerbyJM, CarrEJ, et al. (2011) Gene expression profiling of CD8+ T cells predicts prognosis in patients with Crohn disease and ulcerative colitis. J Clin Invest 121: 4170–4179.

9. McKinneyEF, LyonsPA, CarrEJ, HollisJL, JayneDR, et al. (2010) A CD8+ T cell transcription signature predicts prognosis in autoimmune disease. Nat Med 16: 586–591, 581p following 591.

10. CannonJL, CollinsA, ModyPD, BalachandranD, HenriksenKJ, et al. (2008) CD43 regulates Th2 differentiation and inflammation. J Immunol 180: 7385–7393.

11. BottemaRW, KerkhofM, ReijmerinkNE, ThijsC, SmitHA, et al. (2010) Gene-gene interaction in regulatory T-cell function in atopy and asthma development in childhood. J Allergy Clin Immunol 126: 338–346, 346 e331–310.

12. Salek-ArdakaniS, CroftM (2006) Regulation of CD4 T cell memory by OX40 (CD134). Vaccine 24: 872–883.

13. BibikovaM, BarnesB, TsanC, HoV, KlotzleB, et al. (2011) High density DNA methylation array with single CpG site resolution. Genomics 98: 288–295.

14. AbsherDM, LiX, WaiteLL, GibsonA, RobertsK, et al. (2013) Genome-Wide DNA Methylation Analysis of Systemic Lupus Erythematosus Reveals Persistent Hypomethylation of Interferon Genes and Compositional Changes to CD4+ T-cell Populations. PLoS Genet 9: e1003678.

15. HawkinsRD, LarjoA, TripathiSK, WagnerU, LuuY, et al. (2013) Global chromatin state analysis reveals lineage-specific enhancers during the initiation of human T helper 1 and T helper 2 cell polarization. Immunity 38: 1271–1284.

16. AranD, HellmanA (2013) DNA methylation of transcriptional enhancers and cancer predisposition. Cell 154: 11–13.

17. DedeurwaerderS, DesmedtC, CalonneE, SinghalSK, Haibe-KainsB, et al. (2011) DNA methylation profiling reveals a predominant immune component in breast cancers. EMBO Mol Med 3: 726–741.

18. ZhangH, CardellLO, BjorkanderJ, BensonM, WangH (2013) Comprehensive profiling of peripheral immune cells and subsets in patients with intermittent allergic rhinitis compared to healthy controls and after treatment with glucocorticoids. Inflammation 36: 821–829.

19. NauschN, BourkeCD, ApplebyLJ, RujeniN, LantzO, et al. (2012) Proportions of CD4+ memory T cells are altered in individuals chronically infected with Schistosoma haematobium. Sci Rep 2: 472.

20. SiegelAM, HeimallJ, FreemanAF, HsuAP, BrittainE, et al. (2011) A critical role for STAT3 transcription factor signaling in the development and maintenance of human T cell memory. Immunity 35: 806–818.

21. PraksovaP, StouracP, BednarikJ, VlckovaE, MikulkovaZ, et al. (2012) Immunoregulatory T cells in multiple sclerosis and the effect of interferon beta and glatiramer acetate treatment on T cell subpopulations. J Neurol Sci 319: 18–23.

22. HousemanEA, AccomandoWP, KoestlerDC, ChristensenBC, MarsitCJ, et al. (2012) DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics 13: 86.

23. LiuY, AryeeMJ, PadyukovL, FallinMD, HesselbergE, et al. (2013) Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol 31: 142–147.

24. NorthML, EllisAK (2011) The role of epigenetics in the developmental origins of allergic disease. Ann Allergy Asthma Immunol 106: 355–361; quiz 362.

25. LeeDU, AgarwalS, RaoA (2002) Th2 lineage commitment and efficient IL-4 production involves extended demethylation of the IL-4 gene. Immunity 16: 649–660.

26. LeeGR, KimST, SpilianakisCG, FieldsPE, FlavellRA (2006) T helper cell differentiation: regulation by cis elements and epigenetics. Immunity 24: 369–379.

27. HuehnJ, PolanskyJK, HamannA (2009) Epigenetic control of FOXP3 expression: the key to a stable regulatory T-cell lineage? Nat Rev Immunol 9: 83–89.

28. JansonPC, LintonLB, BergmanEA, MaritsP, EberhardsonM, et al. (2011) Profiling of CD4+ T cells with epigenetic immune lineage analysis. J Immunol 186: 92–102.

29. BarnesPJ (2011) Pathophysiology of allergic inflammation. Immunol Rev 242: 31–50.

30. HollingsworthJW, MaruokaS, BoonK, GarantziotisS, LiZ, et al. (2008) In utero supplementation with methyl donors enhances allergic airway disease in mice. J Clin Invest 118: 3462–3469.

31. YuQ, ZhouB, ZhangY, NguyenET, DuJ, et al. (2012) DNA methyltransferase 3a limits the expression of interleukin-13 in T helper 2 cells and allergic airway inflammation. Proc Natl Acad Sci U S A 109: 541–546.

32. RamasamyA, CurjuricI, CoinLJ, KumarA, McArdleWL, et al. (2011) A genome-wide meta-analysis of genetic variants associated with allergic rhinitis and grass sensitization and their interaction with birth order. J Allergy Clin Immunol 128: 996–1005.

33. SwamyRS, ReshamwalaN, HunterT, VissamsettiS, SantosCB, et al. (2012) Epigenetic modifications and improved regulatory T-cell function in subjects undergoing dual sublingual immunotherapy. J Allergy Clin Immunol 130: 215–224 e217.

34. StefanowiczD, HackettTL, GarmaroudiFS, GuntherOP, NeumannS, et al. (2012) DNA methylation profiles of airway epithelial cells and PBMCs from healthy, atopic and asthmatic children. PLoS One 7: e44213.

35. CurtinJA, SimpsonA, BelgraveD, Semic-JusufagicA, CustovicA, et al. (2013) Methylation of IL-2 promoter at birth alters the risk of asthma exacerbations during childhood. Clin Exp Allergy 43: 304–311.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#