#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Down-Regulation of eIF4GII by miR-520c-3p Represses Diffuse Large B Cell Lymphoma Development


Deregulation of the translational machinery is emerging as a critical contributor to cancer development. The contribution of microRNAs in translational gene control has been established however; the role of microRNAs in disrupting the cap-dependent translation regulation complex has not been previously described. Here, we established that elevated miR-520c-3p represses global translation, cell proliferation and initiates premature senescence in HeLa and DLBCL cells. Moreover, we demonstrate that miR-520c-3p directly targets translation initiation factor, eIF4GII mRNA and negatively regulates eIF4GII protein synthesis. miR-520c-3p overexpression diminishes cells colony formation and reduces tumor growth in a human xenograft mouse model. Consequently, downregulation of eIF4GII by siRNA decreases translation, cell proliferation and ability to form colonies, as well as induces cellular senescence. In vitro and in vivo findings were further validated in patient samples; DLBCL primary cells demonstrated low miR-520c-3p levels with reciprocally up-regulated eIF4GII protein expression. Our results provide evidence that the tumor suppressor effect of miR-520c-3p is mediated through repression of translation while inducing senescence and that eIF4GII is a key effector of this anti-tumor activity.


Vyšlo v časopise: Down-Regulation of eIF4GII by miR-520c-3p Represses Diffuse Large B Cell Lymphoma Development. PLoS Genet 10(1): e32767. doi:10.1371/journal.pgen.1004105
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004105

Souhrn

Deregulation of the translational machinery is emerging as a critical contributor to cancer development. The contribution of microRNAs in translational gene control has been established however; the role of microRNAs in disrupting the cap-dependent translation regulation complex has not been previously described. Here, we established that elevated miR-520c-3p represses global translation, cell proliferation and initiates premature senescence in HeLa and DLBCL cells. Moreover, we demonstrate that miR-520c-3p directly targets translation initiation factor, eIF4GII mRNA and negatively regulates eIF4GII protein synthesis. miR-520c-3p overexpression diminishes cells colony formation and reduces tumor growth in a human xenograft mouse model. Consequently, downregulation of eIF4GII by siRNA decreases translation, cell proliferation and ability to form colonies, as well as induces cellular senescence. In vitro and in vivo findings were further validated in patient samples; DLBCL primary cells demonstrated low miR-520c-3p levels with reciprocally up-regulated eIF4GII protein expression. Our results provide evidence that the tumor suppressor effect of miR-520c-3p is mediated through repression of translation while inducing senescence and that eIF4GII is a key effector of this anti-tumor activity.


Zdroje

1. Lazaris-KaratzasA, MontineKS, SonenbergN (1990) Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5′ cap. Nature 345: 544–547.

2. ClemensMJ (2004) Targets and mechanisms for the regulation of translation in malignant transformation. Oncogene 23: 3180–3188.

3. PolunovskyVA, BittermanPB (2006) The cap-dependent translation apparatus integrates and amplifies cancer pathways. RNA Biol 3: 10–17.

4. GraffJR, KonicekBW, VincentTM, LynchRL, MonteithD, et al. (2007) Therapeutic suppression of translation initiation factor eIF4E expression reduces tumor growth without toxicity. J Clin Invest 117: 2638–2648.

5. ShayJW, RoninsonIB (2004) Hallmarks of senescence in carcinogenesis and cancer therapy. Oncogene 23: 2919–2933.

6. GingrasAC, RaughtB, SonenbergN (1999) eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 68: 913–963.

7. CaronS, CharonM, CramerE, SonenbergN, Dusanter-FourtI (2004) Selective modification of eukaryotic initiation factor 4F (eIF4F) at the onset of cell differentiation: recruitment of eIF4GII and long-lasting phosphorylation of eIF4E. Mol Cell Biol 24: 4920–4928.

8. WangS, RosenwaldIB, HutzlerMJ, PihanGA, SavasL, et al. (1999) Expression of the eukaryotic translation initiation factors 4E and 2alpha in non-Hodgkin's lymphomas. Am J Pathol 155: 247–255.

9. MericF, HuntKK (2002) Translation initiation in cancer: a novel target for therapy. Mol Cancer Ther 1: 971–979.

10. RuggeroD, MontanaroL, MaL, XuW, LondeiP, et al. (2004) The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nat Med 10: 484–486.

11. WendelHG, De StanchinaE, FridmanJS, MalinaA, RayS, et al. (2004) Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428: 332–337.

12. MoerkeNJ, AktasH, ChenH, CantelS, ReibarkhMY, et al. (2007) Small-molecule inhibition of the interaction between the translation initiation factors eIF4E and eIF4G. Cell 128: 257–267.

13. BordeleauME, RobertF, GerardB, LindqvistL, ChenSM, et al. (2008) Therapeutic suppression of translation initiation modulates chemosensitivity in a mouse lymphoma model. J Clin Invest 118: 2651–2660.

14. GradiA, ImatakaH, SvitkinYV, RomE, RaughtB, et al. (1998) A novel functional human eukaryotic translation initiation factor 4G. Mol Cell Biol 18: 334–342.

15. ImatakaH, GradiA, SonenbergN (1998) A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. The EMBO Journal 17: 7480–7489.

16. Fukuchi-ShimogoriT, IshiiI, KashiwagiK, MashibaH, EkimotoH, et al. (1997) Malignant transformation by overproduction of translation initiation factor eIF4G. Cancer Res 57: 5041–5044.

17. BauerC, DiesingerI, BrassN, SteinhartH, IroH, et al. (2001) Translation initiation factor eIF-4G is immunogenic, overexpressed, and amplified in patients with squamous cell lung carcinoma. Cancer 92: 822–829.

18. AvdulovS, LiS, MichalekV, BurrichterD, PetersonM, et al. (2004) Activation of translation complex eIF4F is essential for the genesis and maintenance of the malignant phenotype in human mammary epithelial cells. Cancer Cell 5: 553–563.

19. TuL, LiuZ, HeX, HeY, YangH, et al. (2010) Over-expression of eukaryotic translation initiation factor 4 gamma 1 correlates with tumor progression and poor prognosis in nasopharyngeal carcinoma. Mol Cancer 9: 78.

20. AmbrosV (2001) microRNAs: tiny regulators with great potential. Cell 107: 823–826.

21. MeltzerPS (2005) Cancer genomics: small RNAs with big impacts. Nature 435: 745–746.

22. VoliniaS, CalinGA, LiuCG, AmbsS, CimminoA, et al. (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103: 2257–2261.

23. Nana-SinkamSP, CroceCM (2010) MicroRNA in chronic lymphocytic leukemia: transitioning from laboratory-based investigation to clinical application. Cancer Genet Cytogenet 203: 127–133.

24. BenhamedM, HerbigU, YeT, DejeanA, BischofO (2012) Senescence is an endogenous trigger for microRNA-directed transcriptional gene silencing in human cells. Nature Cell Biol 14: 266–275.

25. BassoK, SumazinP, MorozovP, SchneiderC, MauteRL, et al. (2009) Identification of the human mature B cell miRNome. Immunity 30: 744–752.

26. MalumbresR, SarosiekKA, CubedoE, RuizJW, JiangX, et al. (2009) Differentiation stage–specific expression of microRNAs in B lymphocytes and diffuse large B-cell lymphomas. Blood 113: 3754–3764.

27. RaiD, KarantiS, JungI, DahiaPL, AguiarRC (2008) Coordinated expression of microRNA-155 and predicted target genes in diffuse large B-cell lymphoma. Cancer Genet Cytogenet 181: 8–15.

28. MuP, HanYC, BetelD, YaoE, SquatritoM, et al. (2009) Genetic dissection of the miR-17∼92 cluster of microRNAs in Myc-induced B-cell lymphomas. Genes Dev 23: 2806–2811.

29. CraigVJ, CogliattiSB, ImigJ, RennerC, NeuenschwanderS, et al. (2011) Myc-mediated repression of microRNA-34a promotes high-grade transformation of B-cell lymphoma by dysregulation of FoxP1. Blood 117: 6227–6236.

30. CraigVJ, TzankovA, FloriM, SchmidCA, BaderAG (2012) Systemic microRNA-34a delivery induces apoptosis and abrogates growth of diffuse large B-cell lymphoma in vivo. Leukemia 26: 2421–2424.

31. BabarIA, ChengCJ, BoothCJ, LiangX, WeidhaasJB, et al. (2012) Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Proc Natl Acad Sci U S A 109: E1695–704.

32. Di LisioL, Sánchez-BeatoM, Gómez-LópezG, RodríguezME, Montes-MorenoS, et al. (2012) MicroRNA signatures in B-cell lymphomas. Blood Cancer J 2: e57.

33. StumpfCR, RuggeroD (2011) The cancerous translation apparatus. Curr Opin Genet Dev 21: 474–483.

34. HagnerPR, SchneiderA, GartenhausRB (2010) Targeting the translational machinery as a novel treatment strategy for hematologic malignancies. Blood 115: 2127–2135.

35. HorvilleurE, WilsonLA, WillisAE (2010) Translation deregulation in B-cell lymphomas. Biochem Soc Trans 38: 1593–1597.

36. WangW, YangX, CristofaloVJ, HolbrookNJ, GorospeM (2001) Loss of HuR is linked to reduced expression of proliferative genes during replicative senescence. Mol Cell Biol 21: 5889–5898.

37. FabianMR, SonenbergN, FilipowiczW (2010) Regulation of mRNA translation and stability by microRNAs. Annual Review of Biochemistry 79: 351–379.

38. HoBC, YuSL, ChenJJ, ChangSY, YanBS, et al. (2011) Enterovirus-induced miR-141 contributes to shutoff of host protein translation by targeting the translation initiation factor eIF4E. Cell Host Microbe 9: 58–69.

39. BellodiCN, KopmarN, RuggeroD (2010) Deregulation of oncogene-induced senescence and p53 translational control in X-linked dyskeratosis congenita. EMBO J 29: 1865–1876.

40. SerranoM (2012) Dissecting the role of mTOR complexes in cellular senescence. Cell Cycle 11: 2231–2232.

41. Ramírez-ValleF, BraunsteinS, ZavadilJ, FormentiSC, SchneiderRJ (2008) eIF4GI links nutrient sensing by mTOR to cell proliferation and inhibition of autophagy. J Cell Biol 181: 293–307.

42. YoungAR, NaritaM (2010) Connecting autophagy to senescence in pathophysiology. Curr Opin Cell Biol 22: 234–240.

43. HuangQ, GumireddyK, SchrierM, le SageC, NagelR, et al. (2008) The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol 10: 202–210.

44. LiuP, WilsonMJ (2012) miR-520c and miR-373 upregulate MMP9 expression by targeting mTOR and SIRT1, and activate the Ras/Raf/MEK/Erk signaling pathway and NF-κB factor in human fibrosarcoma cells. J Cell Physiol 227: 867–876.

45. KeklikoglouI, KoernerC, SchmidtC, ZhangJD, HeckmannD, et al. (2012) MicroRNA-520/373 family functions as a tumor suppressor in estrogen receptor negative breast cancer by targeting NF-κB and TGF-β signaling pathways. Oncogene 31: 4150–4163.

46. ShayJW, RoninsonIB (2004) Hallmarks of senescence in carcinogenesis and cancer therapy. Oncogene 23: 2919–2933.

47. EwaldJA, DesotelleJA, WildingG, JarrardDF (2010) Therapy-induced senescence in cancer. J Natl Cancer Inst 102: 1536–1546.

48. LleonartME, CarneroA, PaciucciR, WangZQ, ShomronN (2011) Cancer, senescence, and aging: translation from basic research to clinics. J Aging Res 692301 doi: 10.4061/2011/692301

49. NardellaC, ClohessyJG, AlimontiA, PandolfiPP (2011) Pro-senescence therapy for cancer treatment. Nat Rev Cancer 11: 503–551.

50. CalinGA, CroceCM (2006) MicroRNA signatures in human cancers. Nature Reviews Cancer 6: 857–866.

51. LawrieCH, ChiJ, TaylorS, TramontiD, BallabioE, et al. (2009) Expression of microRNAs in diffuse large B cell lymphoma is associated with immunophenotype, survival and transformation from follicular lymphoma. J Cell Mol Med 13: 1248–1260.

52. Mazan-MamczarzK, GartenhausRB (2013) Role of microRNA deregulation in the pathogenesis of diffuse large B-cell lymphoma (DLBCL). Leuk Res 37: 1420–1428.

53. ChiJ, BallabioE, ChenXH, KušecR, TaylorS, et al. (2011) MicroRNA expression in multiple myeloma is associated with genetic subtype, isotype and survival. Biol Direct 6: 23.

54. IbrahimHA, AmenF, ReidAG, NareshKN (2011) BCL3 rearrangement, amplification and expression in diffuse large B-cell lymphoma. Eur J Haematol 87: 480–485.

55. MichauxL, DierlammJ, WlodarskaI, BoursV, Van den BergheH (1997) t(14;19)/BCL3 rearrangements in lymphoproliferative disorders: a review of 23 cases. Cancer Genet Cytogenet 94: 36–43.

56. De BenedettiA, GraffJR (2004) eIF-4E expression and its role in malignancies and metastases. Oncogene 23: 3189–3199.

57. WendelHG, SilvaRL, MalinaA, MillsJR, ZhuH, et al. (2007) Dissecting eIF4E action in tumorigenesis. Genes Dev 21: 3232–3237.

58. GreeveJ, PhilipsenA, KrauseK, KlapperW, HeidornK, et al. (2003) Expression of activation-induced cytidine deaminase in human B-cell non-Hodgkin lymphomas. Blood 101: 3574–8350.

59. Mazan-MamczarzK, HagnerPR, ZhangY, DaiB, LehrmannE, et al. (2011) ATM regulates a DNA damage response posttranscriptional RNA operon in lymphocytes. Blood 117: 2441–2450.

60. Mazan-MamczarzK, HagnerPR, DaiB, WoodWH, ZhangY, et al. (2008) Identification of transformation-related pathways in a breast epithelial cell model using a ribonomics approach. Cancer Res 68: 7730–7735.

61. DaiB, ZhaoXF, Mazan-MamczarzK, HagnerP, CorlS, et al. (2011) Functional and molecular interactions between ERK and CHK2 in diffuse large B-cell lymphoma. Nat Commun 2: 402.

62. DaiB, ZhaoXF, HagnerP, ShapiroP, Mazan-MamczarzK, et al. (2009) Extracellular signal-regulated kinase positively regulates the oncogenic activity of MCT-1 in diffuse large B-cell lymphoma. Cancer Res 69: 7835–7843.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#