#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Cell-Cycle Dependent Expression of a Translocation-Mediated Fusion Oncogene Mediates Checkpoint Adaptation in Rhabdomyosarcoma


Rhabdomyosarcoma is the most commonly occurring soft-tissue sarcoma in childhood. Most rhabdomyosarcoma falls into one of two biologically distinct subgroups represented by alveolar or embryonal histology. The alveolar subtype harbors a translocation-mediated PAX3:FOXO1A fusion gene and has an extremely poor prognosis. However, tumor cells have heterogeneous expression for the fusion gene. Using a conditional genetic mouse model as well as human tumor cell lines, we show that that Pax3:Foxo1a expression is enriched in G2 and triggers a transcriptional program conducive to checkpoint adaptation under stress conditions such as irradiation in vitro and in vivo. Pax3:Foxo1a also tolerizes tumor cells to clinically-established chemotherapy agents and emerging molecularly-targeted agents. Thus, the surprisingly dynamic regulation of the Pax3:Foxo1a locus is a paradigm that has important implications for the way in which oncogenes are modeled in cancer cells.


Vyšlo v časopise: Cell-Cycle Dependent Expression of a Translocation-Mediated Fusion Oncogene Mediates Checkpoint Adaptation in Rhabdomyosarcoma. PLoS Genet 10(1): e32767. doi:10.1371/journal.pgen.1004107
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004107

Souhrn

Rhabdomyosarcoma is the most commonly occurring soft-tissue sarcoma in childhood. Most rhabdomyosarcoma falls into one of two biologically distinct subgroups represented by alveolar or embryonal histology. The alveolar subtype harbors a translocation-mediated PAX3:FOXO1A fusion gene and has an extremely poor prognosis. However, tumor cells have heterogeneous expression for the fusion gene. Using a conditional genetic mouse model as well as human tumor cell lines, we show that that Pax3:Foxo1a expression is enriched in G2 and triggers a transcriptional program conducive to checkpoint adaptation under stress conditions such as irradiation in vitro and in vivo. Pax3:Foxo1a also tolerizes tumor cells to clinically-established chemotherapy agents and emerging molecularly-targeted agents. Thus, the surprisingly dynamic regulation of the Pax3:Foxo1a locus is a paradigm that has important implications for the way in which oncogenes are modeled in cancer cells.


Zdroje

1. BrenemanJC, LydenE, PappoAS, LinkMP, AndersonJR, et al. (2003) Prognostic factors and clinical outcomes in children and adolescents with metastatic rhabdomyosarcoma–a report from the Intergroup Rhabdomyosarcoma Study IV. J Clin Oncol 21: 78–84.

2. AndersonJR, BarrFG, HawkinsDS, ParhamDM, SkapekSX, et al. (2010) Fusion-negative alveolar rhabdomyosarcoma: modification of risk stratification is premature. J Clin Oncol 28: e587–588; author reply e589–590.

3. WilliamsonD, MissiagliaE, de ReyniesA, PierronG, ThuilleB, et al. (2010) Fusion gene-negative alveolar rhabdomyosarcoma is clinically and molecularly indistinguishable from embryonal rhabdomyosarcoma. J Clin Oncol 28: 2151–2158.

4. WexlerLH, LadanyiM (2010) Diagnosing alveolar rhabdomyosarcoma: morphology must be coupled with fusion confirmation. J Clin Oncol 28: 2126–2128.

5. KellerC, ArenkielBR, CoffinCM, El-BardeesyN, DePinhoRA, et al. (2004) Alveolar rhabdomyosarcomas in conditional Pax3:Fkhr mice: cooperativity of Ink4a/ARF and Trp53 loss of function. Genes Dev 18: 2614–2626.

6. KellerC, HansenMS, CoffinCM, CapecchiMR (2004) Pax3:Fkhr interferes with embryonic Pax3 and Pax7 function: implications for alveolar rhabdomyosarcoma cell of origin. Genes Dev 18: 2608–2613.

7. NishijoK, ChenQR, ZhangL, McCleishAT, RodriguezA, et al. (2009) Credentialing a preclinical mouse model of alveolar rhabdomyosarcoma. Cancer Res 69: 2902–2911.

8. TaniguchiE, NishijoK, McCleishAT, MichalekJE, GraysonMH, et al. (2008) PDGFR-A is a therapeutic target in alveolar rhabdomyosarcoma. Oncogene 27: 6550–6560.

9. CaoL, YuY, BilkeS, WalkerRL, MayeenuddinLH, et al. (2010) Genome-Wide Identification of PAX3-FKHR Binding Sites in Rhabdomyosarcoma Reveals Candidate Target Genes Important for Development and Cancer. Cancer Res 70: 6497–508.

10. OsukaS, SampetreanO, ShimizuT, SagaI, OnishiN, et al. (2013) IGF1 receptor signaling regulates adaptive radioprotection in glioma stem cells. Stem cells 31: 627–640.

11. NurseP (1994) Ordering S phase and M phase in the cell cycle. Cell 79: 547–550.

12. BerryLD, GouldKL (1996) Regulation of Cdc2 activity by phosphorylation at T14/Y15. Progress in cell cycle research 2: 99–105.

13. SyljuasenRG, JensenS, BartekJ, LukasJ (2006) Adaptation to the ionizing radiation-induced G2 checkpoint occurs in human cells and depends on checkpoint kinase 1 and Polo-like kinase 1 kinases. Cancer Res 66: 10253–10257.

14. SyljuasenRG (2007) Checkpoint adaptation in human cells. Oncogene 26: 5833–5839.

15. YooHY, KumagaiA, ShevchenkoA, ShevchenkoA, DunphyWG (2004) Adaptation of a DNA replication checkpoint response depends upon inactivation of Claspin by the Polo-like kinase. Cell 117: 575–588.

16. CaoL, YuY, BilkeS, WalkerRL, MayeenuddinLH, et al. (2010) Genome-wide identification of PAX3-FKHR binding sites in rhabdomyosarcoma reveals candidate target genes important for development and cancer. Cancer Res 70: 6497–6508.

17. AbrahamJ, ChuaYX, GloverJM, TynerJW, LoriauxMM, et al. (2012) An adaptive Src-PDGFRA-Raf axis in rhabdomyosarcoma. Biochem Biophys Res Commun 426: 363–368.

18. KitzmannM, CarnacG, VandrommeM, PrimigM, LambNJ, et al. (1998) The muscle regulatory factors MyoD and myf-5 undergo distinct cell cycle-specific expression in muscle cells. J Cell Biol 142: 1447–1459.

19. Batonnet-PichonS, TintignacLJ, CastroA, SirriV, LeibovitchMP, et al. (2006) MyoD undergoes a distinct G2/M-specific regulation in muscle cells. Exp Cell Res 312: 3999–4010.

20. KoniarasK, CuddihyAR, ChristopoulosH, HoggA, O'ConnellMJ (2001) Inhibition of Chk1-dependent G2 DNA damage checkpoint radiosensitizes p53 mutant human cells. Oncogene 20: 7453–7463.

21. ClemensonC, Marsolier-KergoatMC (2009) DNA damage checkpoint inactivation: adaptation and recovery. DNA Repair (Amst) 8: 1101–1109.

22. HanksS, ColemanK, ReidS, PlajaA, FirthH, et al. (2004) Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat Genet 36: 1159–1161.

23. Kowal-VernA, Gonzalez-CrussiF, TurnerJ, TrujilloYP, ChouP, et al. (1990) Flow and image cytometric DNA analysis in rhabdomyosarcoma. Cancer Res 50: 6023–6027.

24. San Miguel-FraileP, Carrillo-GijonR, Rodriguez-PeraltoJL, BadiolaIA (2004) Prognostic significance of DNA ploidy and proliferative index (MIB-1 index) in childhood rhabdomyosarcoma. Am J Clin Pathol 121: 358–365.

25. ShapiroDN, ParhamDM, DouglassEC, AshmunR, WebberBL, et al. (1991) Relationship of tumor-cell ploidy to histologic subtype and treatment outcome in children and adolescents with unresectable rhabdomyosarcoma. J Clin Oncol 9: 159–166.

26. LiG, KikuchiK, RadkaM, AbrahamJ, RubinBP, et al. (2013) IL-4 receptor blockade abrogates satellite cell - rhabdomyosarcoma fusion and prevents tumor establishment. Stem cells 31: 2304–12.

27. WeihuaZ, LinQ, RamothAJ, FanD, FidlerIJ (2011) Formation of solid tumors by a single multinucleated cancer cell. Cancer 117: 4092–4099.

28. KikuchiK, SoundararajanA, ZarzabalLA, WeemsCR, NelonLD, et al. (2012) Protein kinase C iota as a therapeutic target in alveolar rhabdomyosarcoma. Oncogene 32: 286–95.

29. YamadaHY, RaoCV (2010) Genes that modulate the sensitivity for anti-microtubule drug-mediated chemotherapy. Curr Cancer Drug Targets 10: 623–633.

30. HuK, LeeC, QiuD, FotovatiA, DaviesA, et al. (2009) Small interfering RNA library screen of human kinases and phosphatases identifies polo-like kinase 1 as a promising new target for the treatment of pediatric rhabdomyosarcomas. Mol Cancer Ther 8: 3024–3035.

31. SkapekSX, AndersonJ, BarrFG, BridgeJA, Gastier-FosterJM, et al. (2013) PAX-FOXO1 Fusion Status Drives Unfavorable Outcome for Children With Rhabdomyosarcoma: A Children's Oncology Group Report. Pediatr Blood Cancer 60: 1411–7.

32. MissiagliaE, WilliamsonD, ChisholmJ, WirapatiP, PierronG, et al. (2012) PAX3/FOXO1 fusion gene status is the key prognostic molecular marker in rhabdomyosarcoma and significantly improves current risk stratification. J Clin Oncol 30: 1670–1677.

33. GuptaAA, AndersonJR, PappoAS, SpuntSL, DasguptaR, et al. (2012) Patterns of chemotherapy-induced toxicities in younger children and adolescents with rhabdomyosarcoma: a report from the Children's Oncology Group Soft Tissue Sarcoma Committee. Cancer 118: 1130–1137.

34. HaldarM, HancockJD, CoffinCM, LessnickSL, CapecchiMR (2007) A conditional mouse model of synovial sarcoma: insights into a myogenic origin. Cancer Cell 11: 375–388.

35. ZhuH, AcquavivaJ, RamachandranP, BoskovitzA, WoolfendenS, et al. (2009) Oncogenic EGFR signaling cooperates with loss of tumor suppressor gene functions in gliomagenesis. Proc Natl Acad Sci U S A 106: 2712–2716.

36. BerntKM, ZhuN, SinhaAU, VempatiS, FaberJ, et al. (2011) MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell 20: 66–78.

37. DiMartinoJF, MillerT, AytonPM, LandeweT, HessJL, et al. (2000) A carboxy-terminal domain of ELL is required and sufficient for immortalization of myeloid progenitors by MLL-ELL. Blood 96: 3887–3893.

38. TynerJW, WaltersDK, WillisSG, LuttroppM, OostJ, et al. (2008) RNAi screening of the tyrosine kinome identifies therapeutic targets in acute myeloid leukemia. Blood 111: 2238–2245.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#