#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A Genomic Survey of Positive Selection in Provides Insights into the Evolution of Accidental Virulence


Certain environmental microorganisms can cause severe human infections, even in the absence of an obvious requirement for transition through an animal host for replication (“accidental virulence”). To understand this process, we compared eleven isolate genomes of Burkholderia pseudomallei (Bp), a tropical soil microbe and causative agent of the human and animal disease melioidosis. We found evidence for the existence of several new genes in the Bp reference genome, identifying 282 novel genes supported by at least two independent lines of supporting evidence (mRNA transcripts, database homologs, and presence of ribosomal binding sites) and 81 novel genes supported by all three lines. Within the Bp core genome, 211 genes exhibited significant levels of positive selection (4.5%), distributed across many cellular pathways including carbohydrate and secondary metabolism. Functional experiments revealed that certain positively selected genes might enhance mammalian virulence by interacting with host cellular pathways or utilizing host nutrients. Evolutionary modifications improving Bp environmental fitness may thus have indirectly facilitated the ability of Bp to colonize and survive in mammalian hosts. These findings improve our understanding of the pathogenesis of melioidosis, and establish Bp as a model system for studying the genetics of accidental virulence.


Vyšlo v časopise: A Genomic Survey of Positive Selection in Provides Insights into the Evolution of Accidental Virulence. PLoS Pathog 6(4): e32767. doi:10.1371/journal.ppat.1000845
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1000845

Souhrn

Certain environmental microorganisms can cause severe human infections, even in the absence of an obvious requirement for transition through an animal host for replication (“accidental virulence”). To understand this process, we compared eleven isolate genomes of Burkholderia pseudomallei (Bp), a tropical soil microbe and causative agent of the human and animal disease melioidosis. We found evidence for the existence of several new genes in the Bp reference genome, identifying 282 novel genes supported by at least two independent lines of supporting evidence (mRNA transcripts, database homologs, and presence of ribosomal binding sites) and 81 novel genes supported by all three lines. Within the Bp core genome, 211 genes exhibited significant levels of positive selection (4.5%), distributed across many cellular pathways including carbohydrate and secondary metabolism. Functional experiments revealed that certain positively selected genes might enhance mammalian virulence by interacting with host cellular pathways or utilizing host nutrients. Evolutionary modifications improving Bp environmental fitness may thus have indirectly facilitated the ability of Bp to colonize and survive in mammalian hosts. These findings improve our understanding of the pathogenesis of melioidosis, and establish Bp as a model system for studying the genetics of accidental virulence.


Zdroje

1. HoldenMT

TitballRW

PeacockSJ

Cerdeno-TarragaAM

AtkinsT

2004 Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc Natl Acad Sci U S A 101 14240 14245

2. WiersingaWJ

van der PollT

WhiteNJ

DayNP

PeacockSJ

2006 Melioidosis: insights into the pathogenicity of Burkholderia pseudomallei. Nat Rev Microbiol 4 272 282

3. CurrieBJ

2008 Advances and remaining uncertainties in the epidemiology of Burkholderia pseudomallei and melioidosis. Trans R Soc Trop Med Hyg 102 225 227

4. CasadevallA

PirofskiLA

2007 Accidental virulence, cryptic pathogenesis, martians, lost hosts, and the pathogenicity of environmental microbes. Eukaryot Cell 6 2169 2174

5. U'Ren JM

HornstraH

PearsonT

SchuppJM

LeademB

2007 Fine-scale genetic diversity among Burkholderia pseudomallei soil isolates in northeast Thailand. Appl Environ Microbiol 73 6678 6681

6. TumapaS

Burkholderia pseudomallei genome plasticity associated with genomic island variation. BMC Genomics 9 190 (2008)

7. SimSH

YuY

LinCH

KaruturiRK

WuthiekanunV

2008 The core and accessory genomes of Burkholderia pseudomallei: implications for human melioidosis. PLoS Pathog 4 e1000178 doi:10.1371/journal.ppat.1000178

8. InglisTJ

RobertsonT

WoodsDE

DuttonN

ChangBJ

2003 Flagellum-mediated adhesion by Burkholderia pseudomallei precedes invasion of Acanthamoeba astronyxis. Infect Immun 71 2280 2282

9. GanYH

ChuaKL

ChuaHH

LiuB

HiiCS

2002 Characterization of Burkholderia pseudomallei infection and identification of novel virulence factors using a Caenorhabditis elegans host system. Mol Microbiol 44 1185 1197

10. UlettGC

CurrieBJ

ClairTW

MayoM

KetheesanN

2001 Burkholderia pseudomallei virulence: definition, stability and association with clonality. Microbes Infect 3 621 631

11. FrigaardNU

MartinezA

MincerTJ

DeLongEF

2006 Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea. Nature 439 847 850

12. BensonG

1999 Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27 573 580

13. SiguierP

PerochonJ

LestradeL

MahillonJ

ChandlerM

2006 ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 34 D32 36

14. MavromatisK

IvanovaN

BarryK

ShapiroH

GoltsmanE

2007 Use of simulated data sets to evaluate the fidelity of metagenomic processing methods. Nat Methods 4 495 500

15. ZhuH

HuGQ

YangYF

WangJ

SheZS

2007 MED: a new non-supervised gene prediction algorithm for bacterial and archaeal genomes. BMC Bioinformatics 8 97

16. BertoneP

StolcV

RoyceTE

RozowskyJS

UrbanAE

2004 Global identification of human transcribed sequences with genome tiling arrays. Science 306 2242 2246

17. GardnerPP

DaubJ

TateJG

NawrockiEP

KolbeDL

2009 Rfam: updates to the RNA families database. Nucleic Acids Res 37 D136 140

18. LoftusB

AndersonI

DaviesR

AlsmarkUC

SamuelsonJ

2005 The genome of the protist parasite Entamoeba histolytica. Nature 433 865 868

19. KalmanS

MitchellW

MaratheR

LammelC

FanJ

1999 Comparative genomes of Chlamydia pneumoniae and C. trachomatis. Nat Genet 21 385 389

20. LoweTM

EddySR

1997 tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25 955 964

21. LarkinMA

BlackshieldsG

BrownNP

ChennaR

McGettiganPA

2007 Clustal W and Clustal X version 2.0. Bioinformatics 23 2947 2948

22. SuzekBE

ErmolaevaMD

SchreiberM

SalzbergSL

2001 A probabilistic method for identifying start codons in bacterial genomes. Bioinformatics 17 1123 1130

23. SmithMG

GianoulisTA

PukatzkiS

MekalanosJJ

OrnstonLN

2007 New insights into Acinetobacter baumannii pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis. Genes Dev 21 601 614

24. DelcherAL

BratkeKA

PowersEC

SalzbergSL

2007 Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23 673 679

25. WooPC

LeungPK

TsoiHW

YuenKY

2001 Cloning and characterisation of malE in Burkholderia pseudomallei. J Med Microbiol 50 330 338

26. WinstanleyC

HalesBA

HartCA

1999 Evidence for the presence in Burkholderia pseudomallei of a type III secretion system-associated gene cluster. J Med Microbiol 48 649 656

27. KyteJ

DoolittleRF

1982 A simple method for displaying the hydropathic character of a protein. J Mol Biol 157 105 132

28. KrauseL

McHardyAC

NattkemperTW

PuhlerA

StoyeJ

2007 GISMO–gene identification using a support vector machine for ORF classification. Nucleic Acids Res 35 540 549

29. SerresMH

GopalS

NahumLA

LiangP

GaasterlandT

2001 A functional update of the Escherichia coli K-12 genome. Genome Biol 2 RESEARCH0035

30. LefebureT

StanhopeMJ

2007 Evolution of the core and pan-genome of Streptococcus: positive selection, recombination, and genome composition. Genome Biol 8 R71

31. TettelinH

MasignaniV

CieslewiczMJ

DonatiC

MediniD

2005 Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci U S A 102 13950 13955

32. NiermanWC

DeShazerD

KimHS

TettelinH

NelsonKE

2004 Structural flexibility in the Burkholderia mallei genome. Proc Natl Acad Sci U S A 101 14246 14251

33. KimHS

SchellMA

YuY

UlrichRL

SarriaSH

2005 Bacterial genome adaptation to niches: divergence of the potential virulence genes in three Burkholderia species of different survival strategies. BMC Genomics 6 174

34. YuY

KimHS

ChuaHH

LinCH

SimSH

2006 Genomic patterns of pathogen evolution revealed by comparison of Burkholderia pseudomallei, the causative agent of melioidosis, to avirulent Burkholderia thailandensis. BMC Microbiol 6 46

35. PearsonT

GiffardP

Beckstrom-SternbergS

AuerbachR

HornstraH

2009 Phylogeographic reconstruction of a bacterial species with high levels of lateral gene transfer. BMC Biol 7 78

36. TuanyokA

AuerbachRK

BrettinTS

BruceDC

MunkAC

2007 A horizontal gene transfer event defines two distinct groups within Burkholderia pseudomallei that have dissimilar geographic distributions. J Bacteriol 189 9044 9049

37. ChenSL

HungCS

XuJ

ReigstadCS

MagriniV

2006 Identification of genes subject to positive selection in uropathogenic strains of Escherichia coli: a comparative genomics approach. Proc Natl Acad Sci U S A 103 5977 5982

38. AnisimovaM

BielawskiJP

YangZ

2001 Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution. Mol Biol Evol 18 1585 1592

39. YangZ

2007 PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24 1586 1591

40. KorberB

2000 HIV Signature and Sequence Variation Analysis. Dordrecht, Netherlands Kluwer Academic Publishers 55 72 Computational Analysis of HIV Molecular Sequences, Chapter 4 Allen G. Rodrigo and Gerald H. Learn, eds

41. SawyerS

1989 Statistical tests for detecting gene conversion. Mol Biol Evol 6 526 538

42. BruenTC

PhilippeH

BryantD

2006 A simple and robust statistical test for detecting the presence of recombination. Genetics 172 2665 2681

43. DidelotX

FalushD

2007 Inference of bacterial microevolution using multilocus sequence data. Genetics 175 1251 1266

44. CraigL

PiqueME

TainerJA

2004 Type IV pilus structure and bacterial pathogenicity. Nat Rev Microbiol 2 363 378

45. Essex-LoprestiAE

BoddeyJA

ThomasR

SmithMP

HartleyMG

2005 A type IV pilin, PilA, Contributes To Adherence of Burkholderia pseudomallei and virulence in vivo. Infect Immun 73 1260 1264

46. LiuB

KooGC

YapEH

ChuaKL

GanYH

2002 Model of differential susceptibility to mucosal Burkholderia pseudomallei infection. Infect Immun 70 504 511

47. AktoriesK

BarbieriJT

2005 Bacterial cytotoxins: targeting eukaryotic switches. Nat Rev Microbiol 3 397 410

48. HallA

1998 Rho GTPases and the actin cytoskeleton. Science 279 509 514

49. StevensMP

FriebelA

TaylorLA

WoodMW

BrownPJ

2003 A Burkholderia pseudomallei type III secreted protein, BopE, facilitates bacterial invasion of epithelial cells and exhibits guanine nucleotide exchange factor activity. J Bacteriol 185 4992 4996

50. De BuckE

LammertynE

AnneJ

2008 The importance of the twin-arginine translocation pathway for bacterial virulence. Trends Microbiol 16 442 453

51. HuxtableRJ

1992 Physiological actions of taurine. Physiol Rev 72 101 163

52. SaitouN

NeiM

1987 The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4 406 425

53. PerriereG

GouyM

1996 WWW-query: an on-line retrieval system for biological sequence banks. Biochimie 78 364 369

54. EichhornE

van der PloegJR

KerteszMA

LeisingerT

1997 Characterization of alpha-ketoglutarate-dependent taurine dioxygenase from Escherichia coli. J Biol Chem 272 23031 23036

55. van der PloegJR

WeissMA

SallerE

NashimotoH

SaitoN

1996 Identification of sulfate starvation-regulated genes in Escherichia coli: a gene cluster involved in the utilization of taurine as a sulfur source. J Bacteriol 178 5438 5446

56. ChuaKL

ChanYY

GanYH

2003 Flagella are virulence determinants of Burkholderia pseudomallei. Infect Immun 71 1622 1629

57. TuanyokA

KimHS

NiermanWC

YuY

DunbarJ

2005 Genome-wide expression analysis of iron regulation in Burkholderia pseudomallei and Burkholderia mallei using DNA microarrays. FEMS Microbiol Lett 252 327 335

58. BrownSA

PalmerKL

WhiteleyM

2008 Revisiting the host as a growth medium. Nat Rev Microbiol 6 657 666

59. SpragueLD

NeubauerH

2004 Melioidosis in animals: a review on epizootiology, diagnosis and clinical presentation. J Vet Med B Infect Dis Vet Public Health 51 305 320

60. PeacockSJ

SchweizerHP

DanceDA

SmithTL

GeeJE

2008 Management of accidental laboratory exposure to Burkholderia pseudomallei and B. mallei. Emerg Infect Dis 14 e2

61. DarlingAE

TreangenTJ

MesseguerX

PernaNT

2007 Analyzing patterns of microbial evolution using the mauve genome alignment system. Methods Mol Biol 396 135 152

62. ChenF

MackeyAJ

StoeckertCJJr

RoosDS

2006 OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Res 34 D363 368

63. AltschulSF

GishW

MillerW

MyersEW

LipmanDJ

1990 Basic local alignment search tool. J Mol Biol 215 403 410

64. SuyamaM

TorrentsD

BorkP

2006 PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res 34 W609 612

65. WongWS

YangZ

GoldmanN

NielsenR

2004 Accuracy and power of statistical methods for detecting adaptive evolution in protein coding sequences and for identifying positively selected sites. Genetics 168 1041 1051

66. BoddeyJA

FleggCP

DayCJ

BeachamIR

PeakIR

2006 Temperature-regulated microcolony formation by Burkholderia pseudomallei requires pilA and enhances association with cultured human cells. Infect Immun 74 5374 5381

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 4
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#