Emergence and Pathogenicity of Highly Virulent Genotypes in the Northwest United States
Cryptococcus gattii causes life-threatening disease in otherwise healthy hosts and to a lesser extent in immunocompromised hosts. The highest incidence for this disease is on Vancouver Island, Canada, where an outbreak is expanding into neighboring regions including mainland British Columbia and the United States. This outbreak is caused predominantly by C. gattii molecular type VGII, specifically VGIIa/major. In addition, a novel genotype, VGIIc, has emerged in Oregon and is now a major source of illness in the region. Through molecular epidemiology and population analysis of MLST and VNTR markers, we show that the VGIIc group is clonal and hypothesize it arose recently. The VGIIa/IIc outbreak lineages are sexually fertile and studies support ongoing recombination in the global VGII population. This illustrates two hallmarks of emerging outbreaks: high clonality and the emergence of novel genotypes via recombination. In macrophage and murine infections, the novel VGIIc genotype and VGIIa/major isolates from the United States are highly virulent compared to similar non-outbreak VGIIa/major-related isolates. Combined MLST-VNTR analysis distinguishes clonal expansion of the VGIIa/major outbreak genotype from related but distinguishable less-virulent genotypes isolated from other geographic regions. Our evidence documents emerging hypervirulent genotypes in the United States that may expand further and provides insight into the possible molecular and geographic origins of the outbreak.
Vyšlo v časopise:
Emergence and Pathogenicity of Highly Virulent Genotypes in the Northwest United States. PLoS Pathog 6(4): e32767. doi:10.1371/journal.ppat.1000850
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1000850
Souhrn
Cryptococcus gattii causes life-threatening disease in otherwise healthy hosts and to a lesser extent in immunocompromised hosts. The highest incidence for this disease is on Vancouver Island, Canada, where an outbreak is expanding into neighboring regions including mainland British Columbia and the United States. This outbreak is caused predominantly by C. gattii molecular type VGII, specifically VGIIa/major. In addition, a novel genotype, VGIIc, has emerged in Oregon and is now a major source of illness in the region. Through molecular epidemiology and population analysis of MLST and VNTR markers, we show that the VGIIc group is clonal and hypothesize it arose recently. The VGIIa/IIc outbreak lineages are sexually fertile and studies support ongoing recombination in the global VGII population. This illustrates two hallmarks of emerging outbreaks: high clonality and the emergence of novel genotypes via recombination. In macrophage and murine infections, the novel VGIIc genotype and VGIIa/major isolates from the United States are highly virulent compared to similar non-outbreak VGIIa/major-related isolates. Combined MLST-VNTR analysis distinguishes clonal expansion of the VGIIa/major outbreak genotype from related but distinguishable less-virulent genotypes isolated from other geographic regions. Our evidence documents emerging hypervirulent genotypes in the United States that may expand further and provides insight into the possible molecular and geographic origins of the outbreak.
Zdroje
1. MorensDM
FolkersGK
FauciAS
2004 The challenge of emerging and re-emerging infectious diseases. Nature 430 242 249
2. CohenML
2000 Changing patterns of infectious disease. Nature 406 762 767
3. JonesKE
PatelNG
LevyMA
StoreygardA
BalkD
2008 Global trends in emerging infectious diseases. Nature 451 990 993
4. PappasC
AguilarPV
BaslerCF
SolorzanoA
ZengH
2008 Single gene reassortants identify a critical role for PB1, HA, and NA in the high virulence of the 1918 pandemic influenza virus. Proc Natl Acad Sci U S A 105 3064 3069
5. HeitmanJ
2006 Sexual reproduction and the evolution of microbial pathogens. Curr Biol 16 R711 725
6. FraserJA
GilesSS
WeninkEC
Geunes-BoyerSG
WrightJR
2005 Same-sex mating and the origin of the Vancouver Island Cryptococcus gattii outbreak. Nature 437 1360 1364
7. GriggME
BonnefoyS
HehlAB
SuzukiY
BoothroydJC
2001 Success and virulence in Toxoplasma as the result of sexual recombination between two distinct ancestries. Science 294 161 165
8. GriggME
SuzukiY
2003 Sexual recombination and clonal evolution of virulence in Toxoplasma. Microbes Infect 5 685 690
9. ReidSD
HerbelinCJ
BumbaughAC
SelanderRK
WhittamTS
2000 Parallel evolution of virulence in pathogenic Escherichia coli. Nature 406 64 67
10. CasadevallA
PirofskiL
2001 Host-pathogen interactions: the attributes of virulence. J Infect Dis 184 337 344
11. LiW
RaoultD
FournierPE
2009 Bacterial strain typing in the genomic era. FEMS Microbiol Rev 33 892 916
12. KiddSE
HagenF
TscharkeRL
HuynhM
BartlettKH
2004 A rare genotype of Cryptococcus gattii caused the cryptococcosis outbreak on Vancouver Island (British Columbia, Canada). Proc Natl Acad Sci U S A 101 17258 17263
13. ByrnesEJ3rd
BildfellRJ
FrankSA
MitchellTG
MarrKA
2009 Molecular evidence that the range of the Vancouver Island outbreak of Cryptococcus gattii infection has expanded into the Pacific Northwest in the United States. J Infect Dis 199 1081 1086
14. ByrnesEJ3rd
BildfellRJ
DearingPL
ValentineBA
HeitmanJ
2009 Cryptococcus gattii with bimorphic colony types in a dog in western Oregon: additional evidence for expansion of the Vancouver Island outbreak. J Vet Diagn Invest 21 133 136
15. MacDougallL
KiddSE
GalanisE
MakS
LeslieMJ
2007 Spread of Cryptococcus gattii in British Columbia, Canada, and detection in the Pacific Northwest, USA. Emerg Infect Dis 13 42 50
16. BartlettKH
KiddSE
KronstadJW
2008 The emergence of Cryptococcus gattii in British Columbia and the Pacific Northwest. Curr Infect Dis Rep 10 58 65
17. DattaK
BartlettKH
BaerR
ByrnesE
GalanisE
2009 Spread of Cryptococcus gattii into Pacific Northwest region of the United States. Emerg Infect Dis 15 1185 1191
18. UptonA
FraserJA
KiddSE
BretzC
BartlettKH
2007 First contemporary case of human infection with Cryptococcus gattii in Puget Sound: evidence for spread of the Vancouver Island outbreak. J Clin Microbiol 45 3086 3088
19. Kwon-ChungKJ
BennettJE
1984 Epidemiologic differences between the two varieties of Cryptococcus neoformans. Am J Epidemiol 120 123 130
20. Kwon-ChungKJ
BennettJE
1984 High prevalence of Cryptococcus neoformans var. gattii in tropical and subtropical regions. Zentralbl Bakteriol Mikrobiol Hyg [A] 257 213 218
21. SorrellTC
2001 Cryptococcus neoformans variety gattii. Med Mycol 39 155 168
22. Kwon-ChungKJ
BoekhoutT
FellJW
DiazM
2002 Proposal to conserve the name Cryptococcus gattii against C. hondurianus and C. bacillisporus (Basidiomycota, Hymenomycetes, Tremellomycetidae) Taxon 51 804 806
23. CasadevallA
PerfectJ
1998 Cryptococcus neoformans Washington DC ASM Press
24. ParkBJ
WannemuehlerKA
MarstonBJ
GovenderN
PappasPG
2009 Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. Aids 23 525 530
25. PerfectJR
1989 Cryptococcosis. Infect Dis Clin North Am 3 77 102
26. KiddSE
ChowY
MakS
BachPJ
ChenH
2007 Characterization of environmental sources of the human and animal pathogen Cryptococcus gattii in British Columbia, Canada, and the Pacific Northwest of the United States. Appl Environ Microbiol 73 1433 1443
27. MacDougallL
FyfeM
2006 Emergence of Cryptococcus gattii in a novel environment provides clues to its incubation period. J Clin Microbiol 44 1851 1852
28. MeyerW
AanensenDM
BoekhoutT
CogliatiM
DiazMR
2009 Consensus multi-locus sequence typing scheme for Cryptococcus neoformans and Cryptococcus gattii. Med Mycol 47 561 570
29. BoversM
HagenF
KuramaeEE
BoekhoutT
2008 Six monophyletic lineages identified within Cryptococcus neoformans and Cryptococcus gattii by multi-locus sequence typing. Fungal Genet Biol 45 400 421
30. JamesTY
LitvintsevaAP
VilgalysR
MorganJA
TaylorJW
2009 Rapid global expansion of the fungal disease chytridiomycosis into declining and healthy amphibian populations. PLoS Pathog 5 e1000458 doi:10.1371/journal.ppat.1000458
31. MaH
HagenF
StekelDJ
JohnstonSA
SionovE
2009 The fatal fungal outbreak on Vancouver Island is characterized by enhanced intracellular parasitism driven by mitochondrial regulation. Proc Natl Acad Sci U S A 106 12980 12985
32. MaidenMC
BygravesJA
FeilE
MorelliG
RussellJE
1998 Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 95 3140 3145
33. CarterDA
TaylorJW
DechairoB
BurtA
KoenigGL
2001 Amplified single-nucleotide polymorphisms and a (GA)(n) microsatellite marker reveal genetic differentiation between populations of Histoplasma capsulatum from the Americas. Fungal Genet Biol 34 37 48
34. FisherMC
KoenigGL
WhiteTJ
TaylorJW
2000 Pathogenic clones versus environmentally driven population increase: analysis of an epidemic of the human fungal pathogen Coccidioides immitis. J Clin Microbiol 38 807 813
35. BensonG
1999 Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27 573 580
36. FraserJA
SubaranRL
NicholsCB
HeitmanJ
2003 Recapitulation of the sexual cycle of the primary fungal pathogen Cryptococcus neoformans var. gattii: implications for an outbreak on Vancouver Island, Canada. Eukaryot Cell 2 1036 1045
37. AltschulSF
MaddenTL
SchafferAA
ZhangJ
ZhangZ
1997 Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25 3389 3402
38. ThompsonJD
HigginsDG
GibsonTJ
1994 CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22 4673 4680
39. KumarS
TamuraK
NeiM
2004 MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5 150 163
40. DereeperA
GuignonV
BlancG
AudicS
BuffetS
2008 Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36 W465 469
41. GuindonS
GascuelO
2003 A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52 696 704
42. ClementM
PosadaD
CrandallKA
2000 TCS: a computer program to estimate gene genealogies. Mol Ecol 9 1657 1659
43. MaH
CroudaceJE
LammasDA
MayRC
2006 Expulsion of live pathogenic yeast by macrophages. Curr Biol 16 2156 2160
44. VelagapudiR
HsuehYP
Geunes-BoyerS
WrightJR
HeitmanJ
2009 Spores as infectious propagules of Cryptococcus neoformans. Infect Immun 77 4345 4355
45. ChaturvediS
RenP
NarasipuraSD
ChaturvediV
2005 Selection of optimal host strain for molecular pathogenesis studies on Cryptococcus gattii. Mycopathologia 160 207 215
46. KiddSE
GuoH
BartlettKH
XuJ
KronstadJW
2005 Comparative gene genealogies indicate that two clonal lineages of Cryptococcus gattii in British Columbia resemble strains from other geographical areas. Eukaryot Cell 4 1629 1638
47. ByrnesEJ3rd
HeitmanJ
2009 Cryptococcus gattii outbreak expands into the Northwestern United States with fatal consequences. F1000 Biology Reports 1 62
48. PfeifferT
EllisD
1991 Environmental isolation of Cryptococcus neoformans var. gattii from California. J Infect Dis 163 929 930
49. CarterD
SaulN
CampbellLT
TienB
KrockenbergerM
2007 Sex in natural populations of C. gattii. Sex in Fungi: Molecular determination and evolutionary implications.
HeitmanJ
KronstadJW
TaylorJ
CasseltonL
ASM Press 477 488
50. SaulN
KrockenbergerM
CarterD
2008 Evidence of recombination in mixed-mating-type and alpha-only populations of Cryptococcus gattii sourced from single eucalyptus tree hollows. Eukaryot Cell 7 727 734
51. PerfectJR
LangSD
DurackDT
1980 Chronic cryptococcal meningitis: a new experimental model in rabbits. Am J Pathol 101 177 194
52. StephenC
LesterS
BlackW
FyfeM
RavertyS
2002 Multispecies outbreak of cryptococcosis on southern Vancouver Island, British Columbia. Can Vet J 43 792 794
53. DuncanC
SchwantjeH
StephenC
CampbellJ
BartlettK
2006 Cryptococcus gattii in wildlife of Vancouver Island, British Columbia, Canada. J Wildl Dis 42 175 178
54. CampbellLT
CurrieBJ
KrockenbergerM
MalikR
MeyerW
2005 Clonality and recombination in genetically differentiated subgroups of Cryptococcus gattii. Eukaryot Cell 4 1403 1409
55. CarterD
CampbellLT
SaulN
KrockenbergerM
2010 Sexual reproduction of Cryptococcus gattii: a papulation genetics perspective.
HeitmanJ
T.K
Kwon-ChungJ
PerfectJR
CasadevallA
Cryptococcus: ASM Press
56. XueC
TadaY
DongX
HeitmanJ
2007 The human fungal pathogen Cryptococcus can complete its sexual cycle during a pathogenic association with plants. Cell Host Microbe 1 263 273
57. Kwon-ChungKJ
1976 Morphogenesis of Filobasidiella neoformans, the sexual state of Cryptococcus neoformans. Mycologia 68 821 833
58. Kwon-ChungKJ
1976 A new species of Filobasidiella, the sexual state of Cryptococcus neoformans B and C serotypes. Mycologia 68 943 946
59. LinX
HullCM
HeitmanJ
2005 Sexual reproduction between partners of the same mating type in Cryptococcus neoformans. Nature 434 1017 1021
60. SukroongreungS
KitiniyomK
NilakulC
TantimavanichS
1998 Pathogenicity of basidiospores of Filobasidiella neoformans var. neoformans. Med Mycol 36 419 424
61. ZimmerBL
HempelHO
GoodmanNL
1984 Pathogenicity of the basidiospores of Filobasidiella neoformans. Mycopathologia 85 149 153
62. GilesSS
DagenaisTR
BottsMR
KellerNP
HullCM
2009 Elucidating the pathogenesis of spores from the human fungal pathogen Cryptococcus neoformans. Infect Immun 77 3491 3500
63. KiddSE
BachPJ
HingstonAO
MakS
ChowY
2007 Cryptococcus gattii dispersal mechanisms, British Columbia, Canada. Emerg Infect Dis 13 51 57
64. BoversM
HagenF
KuramaeEE
BoekhoutT
2009 Promiscuous mitochondria in Cryptococcus gattii. FEMS Yeast Res 9 489 503
65. XuJ
YanZ
GuoH
2009 Divergence, hybridization, and recombination in the mitochondrial genome of the human pathogenic yeast Cryptococcus gattii. Mol Ecol 12 2628 42
66. CampbellLT
CarterDA
2006 Looking for sex in the fungal pathogens Cryptococcus neoformans and Cryptococcus gattii. FEMS Yeast Res 6 588 598
67. CampbellLT
FraserJA
NicholsCB
DietrichFS
CarterD
2005 Clinical and environmental isolates of Cryptococcus gattii from Australia that retain sexual fecundity. Eukaryot Cell 4 1410 1419
68. NielsenK
De ObaldiaAL
HeitmanJ
2007 Cryptococcus neoformans mates on pigeon guano: implications for the realized ecological niche and globalization. Eukaryot Cell 6 949 959
69. HagenF
AssenSV
LuijckxGJ
BoekhoutT
KampingaGA
2009 Activated dormant Cryptococcus gattii infection in a Dutch tourist who visited Vancouver Island (Canada): a molecular epidemiological approach. Med Mycol Epub
70. LindbergJ
HagenF
LaursenA
StenderupJ
BoekhoutT
2007 Cryptococcus gattii risk for tourists visiting Vancouver Island, Canada. Emerg Infect Dis 13 178 179
71. BlankenshipJR
SinghN
AlexanderBD
HeitmanJ
2005 Cryptococcus neoformans isolates from transplant recipients are not selected for resistance to calcineurin inhibitors by current immunosuppressive regimens. J Clin Microbiol 43 464 467
72. ByrnesEJIII
LiW
LewitY
PerfectJR
CarterDA
2009 First reported case of Cryptococcus gattii in the Southeastern USA: implications for travel-associated acquisition of an emerging pathogen. PLoS ONE 4 e5851 doi:10.1371/journal.pone.0005851
73. MillerWG
PadhyeAA
van BonnW
JensenE
BrandtME
2002 Cryptococcosis in a bottlenose dolphin (Tursiops truncatus) caused by Cryptococcus neoformans var. gattii. J Clin Microbiol 40 721 724
74. ChaturvediS
DyavaiahM
LarsenRA
ChaturvediV
2005 Cryptococcus gattii in AIDS patients, southern California. Emerg Infect Dis 11 1686 1692
75. OlivaresLR
MartinezKM
CruzRM
RiveraMA
MeyerW
2009 Genotyping of Mexican Cryptococcus neoformans and C. gattii isolates by PCR-fingerprinting. Med Mycol 1 9
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2010 Číslo 4
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- The Effect of Vaccination on the Evolution and Population Dynamics of Avian Paramyxovirus-1
- Reconstitution of SARS-Coronavirus mRNA Cap Methylation
- Deficiencies in Jasmonate-Mediated Plant Defense Reveal Quantitative Variation in Pathogenesis
- A Timescale for Evolution, Population Expansion, and Spatial Spread of an Emerging Clone of Methicillin-Resistant