Rhomboid 4 (ROM4) Affects the Processing of Surface Adhesins and Facilitates Host Cell Invasion by
Host cell attachment by Toxoplasma gondii is dependent on polarized secretion of apical adhesins released from the micronemes. Subsequent translocation of these adhesive complexes by an actin-myosin motor powers motility and host cell invasion. Invasion and motility are also accompanied by shedding of surface adhesins by intramembrane proteolysis. Several previous studies have implicated rhomboid proteases in this step; however, their precise roles in vivo have not been elucidated. Using a conditional knockout strategy, we demonstrate that TgROM4 participates in processing of surface adhesins including MIC2, AMA1, and MIC3. Suppression of TgROM4 led to decreased release of the adhesin MIC2 into the supernatant and concomitantly increased the surface expression of this and a subset of other adhesins. Suppression of TgROM4 resulted in disruption of normal gliding, with the majority of parasites twirling on their posterior ends. Parasites lacking TgROM4 bound better to host cells, but lost the ability to apically orient and consequently most failed to generate a moving junction; hence, invasion was severely impaired. Our findings indicate that TgROM4 is involved in shedding of micronemal proteins from the cell surface. Down regulation of TgROM4 disrupts the normal apical-posterior gradient of adhesins that is important for efficient cell motility and invasion of host cells by T. gondii.
Vyšlo v časopise:
Rhomboid 4 (ROM4) Affects the Processing of Surface Adhesins and Facilitates Host Cell Invasion by. PLoS Pathog 6(4): e32767. doi:10.1371/journal.ppat.1000858
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1000858
Souhrn
Host cell attachment by Toxoplasma gondii is dependent on polarized secretion of apical adhesins released from the micronemes. Subsequent translocation of these adhesive complexes by an actin-myosin motor powers motility and host cell invasion. Invasion and motility are also accompanied by shedding of surface adhesins by intramembrane proteolysis. Several previous studies have implicated rhomboid proteases in this step; however, their precise roles in vivo have not been elucidated. Using a conditional knockout strategy, we demonstrate that TgROM4 participates in processing of surface adhesins including MIC2, AMA1, and MIC3. Suppression of TgROM4 led to decreased release of the adhesin MIC2 into the supernatant and concomitantly increased the surface expression of this and a subset of other adhesins. Suppression of TgROM4 resulted in disruption of normal gliding, with the majority of parasites twirling on their posterior ends. Parasites lacking TgROM4 bound better to host cells, but lost the ability to apically orient and consequently most failed to generate a moving junction; hence, invasion was severely impaired. Our findings indicate that TgROM4 is involved in shedding of micronemal proteins from the cell surface. Down regulation of TgROM4 disrupts the normal apical-posterior gradient of adhesins that is important for efficient cell motility and invasion of host cells by T. gondii.
Zdroje
1. SibleyLD
2004 Invasion strategies of intracellular parasites. Science 304 248 253
2. DobrowolskiJM
SibleyLD
1996 Toxoplasma invasion of mammalian cells is powered by the actin cytoskeleton of the parasite. Cell 84 933 939
3. SahooN
BeattyWL
HeuserJE
SeptD
SibleyLD
2006 Unusual kinetic and structural properties control rapid assembly and turnover of actin in the parasite Toxoplasma gondii. Mol Biol Cell 17 895 906
4. GaskinsE
GilkS
DeVoreN
MannT
WardGE
2004 Identification of the membrane receptor of a class XIV myosin Toxoplasma gondii. J Cell Biol 165 383 393
5. MeissnerM
SchluterD
SoldatiD
2002 Role of Toxoplasma gondii myosin A in powering parasite gliding and host cell invasion. Science 298 837 840
6. BarraganA
SibleyLD
2002 Transepithelial migration of Toxoplasma gondii is linked to parasite motility and virulence. J Exp Med 195 1625 1633
7. MorisakiJH
HeuserJE
SibleyLD
1995 Invasion of Toxoplasma gondii occurs by active penetration of the host cell. J Cell Sci 108 2457 2464
8. ForneyJR
VaughanDK
YangS
HealeyMC
1998 Actin-dependent motility in Cryptosporidium parvum sporozoites. J Parasitol 84 908 913
9. WetzelDM
SchmidtJ
KuhlenschmidtM
DubeyJP
SibleyLD
2005 Gliding motility leads to active cellular invasion by Cryptosporidium parvum sporozoites. Infect Immun 73 5379 5387
10. AminoR
ThibergeS
MartinB
CelliS
ShorteS
2006 Quantitative imaging of Plasmodium transmission from mosquito to mammal. Nat Med 12 220 224
11. CarruthersVB
SibleyLD
1997 Sequential protein secretion from three distinct organelles of Toxoplasma gondii accompanies invasion of human fibroblasts. Eur J Cell Biol 73 114 123
12. AikawaM
MillerLH
JohnsonJ
RabbegeJ
1978 Erythrocyte entry by malarial parasites: a moving junction between erythrocyte and parasite. J Cell Biol 77 72 82
13. AlexanderDL
MitalJ
WardGE
BradleyPJ
BoothroydJC
2005 Identification of the moving junction complex of Toxoplasma gondii: a collaboration between distinct secretory organelles. PLoS Pathog 1 e17 doi:10.1371/journal.ppat.0010017
14. LebrunM
MichelinA
El HajjH
PoncetJ
BradleyPJ
2005 The rhoptry neck protein RON4 relocalizes at the moving junction during Toxoplasma gondii invasion. Cell Micro 7 1823 1833
15. BesteiroS
MichelinA
PoncetJ
DubremetzJ
LebrunM
2009 Export of a Toxoplasma gondii rhoptry neck protein complex at the host cell membrane to form the moving junction during invasion. PLoS Pathog 5 e1000309 doi:10.1371/journal.ppat.1000309
16. StraubKW
ChengSJ
SohnCS
BradleyPJ
2009 Novel components of the apicomplexan moving junction reveal conserved and coccidia-restricted elements. Cell Microbiol 11 590 603
17. CarruthersVB
TomleyFM
2008 Microneme proteins in apicomplexans. Subcell Biochem 47 33 45
18. LovettJL
SibleyLD
2003 Intracellular calcium stores in Toxoplasma gondii govern invasion of host cells. J Cell Sci 116 3009 3016
19. CarruthersVB
SibleyLD
1999 Mobilization of intracellular calcium stimulates microneme discharge in Toxoplasma gondii. Mol Microbiol 31 421 428
20. MitalJ
MeissnerM
SoldatiD
WardGE
2005 Conditional expression of Toxoplasma gondii apical membrane antigen-1 (TgAMA1) demonstrates that TgAMA1 plays a critical role in host cell invasion. Mol Biol Cell 16 4341 4349
21. KesslerH
Herm-GötzA
HeggeS
RauchM
Soldati-FavreD
2008 Microneme protein 8 - a new essential invasion factor in Toxoplasma gondii. J Cell Sci 121 947 956
22. WanKL
CarruthersVB
SibleyLD
AjiokaJW
1997 Molecular characterisation of an expressed sequence tag locus of Toxoplasma gondii encoding the micronemal protein MIC2. Mol Biochem Parasitol 84 203 214
23. HuynhMH
CarruthersVB
2006 Toxoplasma MIC2 is a major determinant of invasion and virulence. PLoS Pathog 2 e84 doi:10.1371/journal.ppat.0020084
24. KappeS
BrudererT
GanttS
FujiokaH
NussenzweigV
1999 Conservation of a gliding motility and cell invasion machinery in apicomplexan parasites. J Cell Biol 147 937 943
25. MatuschewskiK
NunesAC
NussenzweigV
MénardR
2002 Plasmodium sporozoite invasion into insect and mamalian cells is directed by the same dual binding system. EMBO J 21 1597 1606
26. SultanAA
ThathyV
FrevertU
RobsonKJH
CrisantiA
1997 TRAP is necessary for gliding motility and infectivity of Plasmodium sporozoites. Cell 90 511 522
27. WengelnikK
SpaccapeloR
NaitzaS
RobsonKJH
JanseCJ
1999 The A-domain and the thrombospondin-related motif of Plasmodium falciparum TRAP are implicated in the invasion process of mosquito salivary glands. EMBO J 18 5195 5204
28. BuscagliaCA
CoppensI
HolWGJ
NussenzweigV
2003 Site of interaction between aldolase and thrombospondin-related anonymous protein in Plasmodium. Mol Biol Cell 14 4947 4957
29. JewettTJ
SibleyLD
2003 Aldolase forms a bridge between cell surface adhesins and the actin cytoskeleton in apicomplexan parasites. Molec Cell 11 885 894
30. StarnesGL
CoinconM
SyguschJ
SibleyLD
2009 Aldolase is essential for energy production and bridging adhesin-actin cytoskeletal interactions during parasite invasion of host cells. Cell Host Microbe 5 353 364
31. CarruthersVB
ShermanGD
SibleyLD
2000 The Toxoplasma adhesive protein MIC2 is proteolytically processed at multiple sites by two parasite-derived proteases. J Biol Chem 275 14346 14353
32. BarraganA
BrossierF
SibleyLD
2005 Transepithelial migration of Toxoplasma gondii involves an interaction of intercellular adhesion molecule 1 (ICAM-1) with the parasite adhesin MIC2. Cell Microbiol 7 561 568
33. OpitzC
Di CristinaM
ReissM
RuppertT
CrisantiA
2002 Intramembrane cleavage of the microneme proteins at the surface of apicomplexan parasite Toxoplasma gondii. EMBO J 21 1577 1585
34. ZhouXW
BlackmanMJ
HowellSA
CarruthersVB
2004 Proteomic analysis of cleavage events reveals a dynamic two-step mechanism for proteolysis of a key parasite adhesive complex. Molec Cell Proteomics 3 565 576
35. BakerRP
WijetilakaR
UrbanS
2006 Two Plasmodium rhomboid proteases preferentially cleave different adhesins implicated in all invasive stages of malaria. PLoS Pathog 2 e113 doi:10.1371/journal.ppat.0020113
36. KooninEV
MakarovaKS
RogozinIB
DavidovicL
LetellierMC
2003 The rhomboids: a nearly ubiquitous family of intramembrane serine proteases that probably evolved by multiple ancient horizontal gene transfers. Genome Biol 4 R19
37. UrbanS
FreemanM
2003 Substrate specificity of rhomboid intramembrane proteases is governed by helix-breaking residues in the substrate transmembrane domain. Mol Cell 11 1425 1434
38. BrossierF
JewettTJ
SibleyLD
UrbanS
2005 A spatially-localized rhomboid protease cleaves cell surface adhesins essential for invasion by Toxoplasma. Proc Natl Acad Sci (USA) 102 4146 4151
39. DowseT
SoldatiD
2005 Rhomboid-like proteins in Apicomplexa: phylogeny and nomenclature. Trends Parasitol 35 747 756
40. BrossierF
StarnesGL
BeattyWL
SibleyLD
2008 Microneme rhomboid protease TgROM1 is required for efficient intracellular growth of Toxoplasma gondii. Euk Cell 7 664 674
41. DowseTJ
PascallJC
BrownKD
SoldatiD
2005 Apicomplexan rhomboids have a potential role in microneme protein cleavage during host cell invasion. Intl J Parasitol 35 747 756
42. RoosDS
DonaldRGK
MorrissetteNS
MoultonAL
1994 Molecular tools for genetic dissection of the protozoan parasite Toxoplasma gondii. Methods Cell Biol 45 28 61
43. PlattnerF
YarovinskyF
RomeroS
DidryD
CarlierMF
2008 Toxoplasma profilin is essential for host cell invasion and TLR11-dependent induction of an interleukin-12 response. Cell Host Microbe 3 77 87
44. HåkanssonS
MorisakiH
HeuserJE
SibleyLD
1999 Time-lapse video microscopy of gliding motility in Toxoplasma gondii reveals a novel, biphasic mechanism of cell locomotion. Mol Biol Cell 10 3539 3547
45. WetzelDM
HåkanssonS
HuK
RoosDS
SibleyLD
2003 Actin filament polymerization regulates gliding motility by apicomplexan parasites. Mol Biol Cell 14 396 406
46. CarruthersVB
GiddingsOK
SibleyLD
1999 Secretion of micronemal proteins is associated with Toxoplasma invasion of host cells. Cell Microbiol 1 225 236
47. CarruthersVB
MorenoSNJ
SibleyLD
1999 Ethanol and acetaldehyde elevate intracellular [Ca2+] calcium and stimulate microneme discharge in Toxoplasma gondii. Biochem J 342 379 386
48. BrossierF
JewettTJ
LovettJL
SibleyLD
2003 C-terminal processing of the Toxoplasma protein MIC2 is essential for invasion into host cells. J Biol Chem 278 6229 6234
49. MeissnerM
BrechtS
BujardH
SoldatiD
2001 Modulation of myosin A expression by a newly established tetracycline repressor based inducible system in Toxoplasma gondii. Nuc Acids Res 29 E115
50. FoxBA
RistucciaJG
GigleyJP
BzikDJ
2009 Efficient gene replacements in Toxoplasma gondii strains deficient for nonhomologous end joining. Eukaryot Cell 8 520 529
51. MeissnerM
ReissM
ViebigN
CarruthersVB
TourselC
2001 A family of transmembrane microneme proteins of Toxoplasma gondii contain EGF-like domains and function as escorters. J Cell Sci 115 563 574
52. ReissM
ViebigN
BrechtS
FourmauxM
SoeteM
2001 Identification and characterization of an escorter for two secretory adhesins in Toxoplasma gondii. J Cell Biol 152 563 578
53. UrbanS
SchlieperD
FreemanM
2002 Conservation of intramembrane proteolytic activity and substrate specificity in prokaryotic and eukaryotic rhomboids. Curr Biol 12 1507 1512
54. CarruthersVB
BoothroydJC
2007 Pulling together: an integrated model of Toxoplasma cell invasion. Curr Opin Microbiol 10 83 89
55. SbalzariniIF
KoumoutsakosP
2005 Feature point tracking and trajectory analysis for video imaging in cell biology. J Structural Biol 15 182 195
56. DobrowolskiJM
NiesmanIR
SibleyLD
1997 Actin in the parasite Toxoplasma gondii is encoded by a single copy gene, ACT1 and exists primarily in a globular form. Cell Motil Cytoskel 37 253 262
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2010 Číslo 4
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- The Effect of Vaccination on the Evolution and Population Dynamics of Avian Paramyxovirus-1
- Reconstitution of SARS-Coronavirus mRNA Cap Methylation
- Deficiencies in Jasmonate-Mediated Plant Defense Reveal Quantitative Variation in Pathogenesis
- A Timescale for Evolution, Population Expansion, and Spatial Spread of an Emerging Clone of Methicillin-Resistant