The Physical Relationship between Infectivity and Prion Protein Aggregates Is Strain-Dependent
Prions are unconventional infectious agents thought to be primarily composed of PrPSc, a multimeric misfolded conformer of the ubiquitously expressed host-encoded prion protein (PrPC). They cause fatal neurodegenerative diseases in both animals and humans. The disease phenotype is not uniform within species, and stable, self-propagating variations in PrPSc conformation could encode this ‘strain’ diversity. However, much remains to be learned about the physical relationship between the infectious agent and PrPSc aggregation state, and how this varies according to the strain. We applied a sedimentation velocity technique to a panel of natural, biologically cloned strains obtained by propagation of classical and atypical sheep scrapie and BSE infectious sources in transgenic mice expressing ovine PrP. Detergent-solubilized, infected brain homogenates were used as starting material. Solubilization conditions were optimized to separate PrPSc aggregates from PrPC. The distribution of PrPSc and infectivity in the gradient was determined by immunoblotting and mouse bioassay, respectively. As a general feature, a major proteinase K-resistant PrPSc peak was observed in the middle part of the gradient. This population approximately corresponds to multimers of 12–30 PrP molecules, if constituted of PrP only. For two strains, infectivity peaked in a markedly different region of the gradient. This most infectious component sedimented very slowly, suggesting small size oligomers and/or low density PrPSc aggregates. Extending this study to hamster prions passaged in hamster PrP transgenic mice revealed that the highly infectious, slowly sedimenting particles could be a feature of strains able to induce a rapidly lethal disease. Our findings suggest that prion infectious particles are subjected to marked strain-dependent variations, which in turn could influence the strain biological phenotype, in particular the replication dynamics.
Vyšlo v časopise:
The Physical Relationship between Infectivity and Prion Protein Aggregates Is Strain-Dependent. PLoS Pathog 6(4): e32767. doi:10.1371/journal.ppat.1000859
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1000859
Souhrn
Prions are unconventional infectious agents thought to be primarily composed of PrPSc, a multimeric misfolded conformer of the ubiquitously expressed host-encoded prion protein (PrPC). They cause fatal neurodegenerative diseases in both animals and humans. The disease phenotype is not uniform within species, and stable, self-propagating variations in PrPSc conformation could encode this ‘strain’ diversity. However, much remains to be learned about the physical relationship between the infectious agent and PrPSc aggregation state, and how this varies according to the strain. We applied a sedimentation velocity technique to a panel of natural, biologically cloned strains obtained by propagation of classical and atypical sheep scrapie and BSE infectious sources in transgenic mice expressing ovine PrP. Detergent-solubilized, infected brain homogenates were used as starting material. Solubilization conditions were optimized to separate PrPSc aggregates from PrPC. The distribution of PrPSc and infectivity in the gradient was determined by immunoblotting and mouse bioassay, respectively. As a general feature, a major proteinase K-resistant PrPSc peak was observed in the middle part of the gradient. This population approximately corresponds to multimers of 12–30 PrP molecules, if constituted of PrP only. For two strains, infectivity peaked in a markedly different region of the gradient. This most infectious component sedimented very slowly, suggesting small size oligomers and/or low density PrPSc aggregates. Extending this study to hamster prions passaged in hamster PrP transgenic mice revealed that the highly infectious, slowly sedimenting particles could be a feature of strains able to induce a rapidly lethal disease. Our findings suggest that prion infectious particles are subjected to marked strain-dependent variations, which in turn could influence the strain biological phenotype, in particular the replication dynamics.
Zdroje
1. CollingeJ
2001 Prion diseases of humans and animals: their causes and molecular basis. Annu Rev Neurosci 24 519 550
2. PrusinerSB
1998 Prions. Proc Natl Acad Sci U S A 95 13363 13383
3. WeissmannC
2004 The state of the prion. Nat Rev Microbiol 2 861 871
4. MallucciG
CollingeJ
2005 Rational targeting for prion therapeutics. Nat Rev Neurosci 6 23 34
5. CaugheyB
LansburyPT
2003 Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 26 267 298
6. BoltonDC
McKinleyMP
PrusinerSB
1982 Identification of a protein that purifies with the scrapie prion. Science 218 1309 1311
7. BeringueV
VilotteJL
LaudeH
2008 Prion agent diversity and species barrier. Vet Res 39 47
8. BruceME
2003 TSE strain variation. Br Med Bull 66 99 108
9. CollingeJ
ClarkeAR
2007 A general model of prion strains and their pathogenicity. Science 318 930 936
10. TellingGC
ParchiP
DeArmondSJ
CortelliP
MontagnaP
1996 Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity. Science 274 2079 2082
11. BessenRA
MarshRF
1994 Distinct PrP properties suggest the molecular basis of strain variation in transmissible mink encephalopathy. J Virol 68 7859 7868
12. CaugheyB
RaymondGJ
BessenRA
1998 Strain-dependent differences in beta-sheet conformations of abnormal prion protein. J Biol Chem 273 32230 32235
13. ThomzigA
SpassovS
FriedrichM
NaumannD
BeekesM
2004 Discriminating scrapie and bovine spongiform encephalopathy isolates by infrared spectroscopy of pathological prion protein. J Biol Chem 279 33847 33854
14. CollingeJ
SidleKC
MeadsJ
IronsideJ
HillAF
1996 Molecular analysis of prion strain variation and the aetiology of ‘new variant’ CJD. Nature 383 685 690
15. SimVL
CaugheyB
2008 Ultrastructures and strain comparison of under-glycosylated scrapie prion fibrils. Neurobiol Aging
16. BessenRA
KociskoDA
RaymondGJ
NandanS
LansburyPT
1995 Non-genetic propagation of strain-specific properties of scrapie prion protein. Nature 375 698 700
17. CastillaJ
MoralesR
SaaP
BarriaM
GambettiP
2008 Cell-free propagation of prion strains. Embo J 27 2557 2566
18. RiesnerD
KellingsK
PostK
WilleH
SerbanH
1996 Disruption of prion rods generates 10-nm spherical particles having high alpha-helical content and lacking scrapie infectivity. J Virol 70 1714 1722
19. SafarJ
WangW
PadgettMP
CeroniM
PiccardoP
1990 Molecular mass, biochemical composition, and physicochemical behavior of the infectious form of the scrapie precursor protein monomer. Proc Natl Acad Sci U S A 87 6373 6377
20. SklaviadisTK
ManuelidisL
ManuelidisEE
1989 Physical properties of the Creutzfeldt-Jakob disease agent. J Virol 63 1212 1222
21. TateishiJ
KitamotoT
MohriS
SatohS
SatoT
2001 Scrapie removal using Planova virus removal filters. Biologicals 29 17 25
22. SunR
LiuY
ZhangH
ManuelidisL
2008 Quantitative recovery of scrapie agent with minimal protein from highly infectious cultures. Viral Immunol 21 293 302
23. SilveiraJR
RaymondGJ
HughsonAG
RaceRE
SimVL
2005 The most infectious prion protein particles. Nature 437 257 261
24. SomervilleRA
DunnAJ
1996 The association between PrP and infectivity in scrapie and BSE infected mouse brain. Arch Virol 141 275 289
25. SklaviadisT
DreyerR
ManuelidisL
1992 Analysis of Creutzfeldt-Jakob disease infectious fractions by gel permeation chromatography and sedimentation field flow fractionation. Virus Res 26 241 254
26. BrownDA
RoseJK
1992 Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68 533 544
27. le MaireM
ChampeilP
MollerJV
2000 Interaction of membrane proteins and lipids with solubilizing detergents. Biochim Biophys Acta 1508 86 111
28. TzabanS
FriedlanderG
SchonbergerO
HoronchikL
YedidiaY
2002 Protease-sensitive scrapie prion protein in aggregates of heterogeneous sizes. Biochemistry 41 12868 12875
29. LondonE
BrownDA
2000 Insolubility of lipids in triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts). Biochim Biophys Acta 1508 182 195
30. EghiaianF
DaubenfeldT
QuenetY
van AudenhaegeM
BouinAP
2007 Diversity in prion protein oligomerization pathways results from domain expansion as revealed by hydrogen/deuterium exchange and disulfide linkage. Proc Natl Acad Sci U S A 104 7414 7419
31. MerzPA
SomervilleRA
WisniewskiHM
ManuelidisL
ManuelidisEE
1983 Scrapie-associated fibrils in Creutzfeldt-Jakob disease. Nature 306 474 476
32. LasmezasCI
DeslysJP
RobainO
JaeglyA
BeringueV
1997 Transmission of the BSE agent to mice in the absence of detectable abnormal prion protein. Science 275 402 405
33. BeringueV
BencsikA
Le DurA
ReineF
LaiTL
2006 Isolation from cattle of a prion strain distinct from that causing bovine spongiform encephalopathy. PLoS Pathog 2 e112 doi:10.1371/journal.ppat.0020112
34. PrusinerSB
CochranSP
GrothDF
DowneyDE
BowmanKA
1982 Measurement of the scrapie agent using an incubation time interval assay. Ann Neurol 11 353 358
35. PastranaMA
SajnaniG
OniskoB
CastillaJ
MoralesR
2006 Isolation and characterization of a proteinase K-sensitive PrPSc fraction. Biochemistry 45 15710 15717
36. SafarJG
GeschwindMD
DeeringC
DidorenkoS
SattavatM
2005 Diagnosis of human prion disease. Proc Natl Acad Sci U S A 102 3501 3506
37. CronierS
GrosN
TattumMH
JacksonGS
ClarkeAR
2008 Detection and characterization of proteinase K-sensitive disease-related prion protein with thermolysin. Biochem J 416 297 305
38. SomervilleRA
CarpRI
1983 Altered scrapie infectivity estimates by titration and incubation period in the presence of detergents. J Gen Virol 64(Pt 9) 2045 2050
39. GabizonR
McKinleyMP
PrusinerSB
1987 Purified prion proteins and scrapie infectivity copartition into liposomes. Proc Natl Acad Sci U S A 84 4017 4021
40. ViletteD
AndreolettiO
ArcherF
MadelaineMF
VilotteJL
2001 Ex vivo propagation of infectious sheep scrapie agent in heterologous epithelial cells expressing ovine prion protein. Proc Natl Acad Sci U S A 98 4055 4059
41. Le DurA
BeringueV
AndreolettiO
ReineF
LaiTL
2005 A newly identified type of scrapie agent can naturally infect sheep with resistant PrP genotypes. Proc Natl Acad Sci U S A 102 16031 16036
42. BenestadSL
ArsacJN
GoldmannW
NoremarkM
2008 Atypical/Nor98 scrapie: properties of the agent, genetics, and epidemiology. Vet Res 39 19
43. ArsacJN
AndreolettiO
BilheudeJM
LacrouxC
BenestadSL
2007 Similar biochemical signatures and prion protein genotypes in atypical scrapie and Nor98 cases, France and Norway. Emerg Infect Dis 13 58 65
44. KlingebornM
WikL
SimonssonM
RenstromLH
OttingerT
2006 Characterization of proteinase K-resistant N- and C-terminally truncated PrP in Nor98 atypical scrapie. J Gen Virol 87 1751 1760
45. KleinTR
KirschD
KaufmannR
RiesnerD
1998 Prion rods contain small amounts of two host sphingolipids as revealed by thin-layer chromatography and mass spectrometry. Biol Chem 379 655 666
46. SafarJG
KellingsK
SerbanA
GrothD
CleaverJE
2005 Search for a prion-specific nucleic acid. J Virol 79 10796 10806
47. BarronRM
CampbellSL
KingD
BellonA
ChapmanKE
2007 High titers of transmissible spongiform encephalopathy infectivity associated with extremely low levels of PrPSc in vivo. J Biol Chem 282 35878 35886
48. CronierS
BeringueV
BellonA
PeyrinJM
LaudeH
2007 Prion strain- and species-dependent effects of antiprion molecules in primary neuronal cultures. J Virol 81 13794 13800
49. ThackrayAM
HopkinsL
BujdosoR
2007 Proteinase K-sensitive disease-associated ovine prion protein revealed by conformation-dependent immunoassay. Biochem J 401 475 483
50. DeleaultAM
DeleaultNR
HarrisBT
ReesJR
SupattaponeS
2008 The effects of prion protein proteolysis and disaggregation on the strain properties of hamster scrapie. J Gen Virol 89 2642 2650
51. BerardiVA
CardoneF
ValanzanoA
LuM
PocchiariM
2006 Preparation of soluble infectious samples from scrapie-infected brain: a new tool to study the clearance of transmissible spongiform encephalopathy agents during plasma fractionation. Transfusion 46 652 658
52. SafarJ
WilleH
ItriV
GrothD
SerbanH
1998 Eight prion strains have PrP(Sc) molecules with different conformations. Nat Med 4 1157 1165
53. de la MazaA
ParraJL
1997 Solubilizing effects caused by the nonionic surfactant dodecylmaltoside in phosphatidylcholine liposomes. Biophys J 72 1668 1675
54. LambengN
GrossmannM
ChatelainP
FuksB
2006 Solubilization and immunopurification of rat brain synaptic vesicle protein 2A with maintained binding properties. Neurosci Lett 398 107 112
55. LucheS
SantoniV
RabilloudT
2003 Evaluation of nonionic and zwitterionic detergents as membrane protein solubilizers in two-dimensional electrophoresis. Proteomics 3 249 253
56. RibosaII
Sanchez-LealJ
ComellesF
GarciaMT
1997 Solubilization of Large Unilamellar Liposomes by Alkyl Glycosides. J Colloid Interface Sci 187 443 446
57. SafarJG
WilleH
GeschwindMD
DeeringC
LatawiecD
2006 Human prions and plasma lipoproteins. Proc Natl Acad Sci U S A 103 11312 11317
58. TanakaM
CollinsSR
ToyamaBH
WeissmanJS
2006 The physical basis of how prion conformations determine strain phenotypes. Nature 442 585 589
59. LegnameG
NguyenHO
PeretzD
CohenFE
DeArmondSJ
2006 Continuum of prion protein structures enciphers a multitude of prion isolate-specified phenotypes. Proc Natl Acad Sci U S A 103 19105 19110
60. BeringueV
AndreolettiO
Le DurA
EssalmaniR
VilotteJL
2007 A bovine prion acquires an epidemic bovine spongiform encephalopathy strain-like phenotype on interspecies transmission. J Neurosci 27 6965 6971
61. VilotteJL
SoulierS
EssalmaniR
StinnakreMG
VaimanD
2001 Markedly increased susceptibility to natural sheep scrapie of transgenic mice expressing ovine prp. J Virol 75 5977 5984
62. PrusinerSB
ScottM
FosterD
PanKM
GrothD
1990 Transgenetic studies implicate interactions between homologous PrP isoforms in scrapie prion replication. Cell 63 673 686
63. SimonS
NugierJ
MorelN
BoutalH
CreminonC
2008 Rapid typing of transmissible spongiform encephalopathy strains with differential ELISA. Emerg Infect Dis 14 608 616
64. MoudjouM
TreguerE
RezaeiH
SabuncuE
NeuendorfE
2004 Glycan-controlled epitopes of prion protein include a major determinant of susceptibility to sheep scrapie. J Virol 78 9270 9276
65. PaquetS
DaudeN
CourageotMP
ChapuisJ
LaudeH
2007 PrPc does not mediate internalization of PrPSc but is required at an early stage for de novo prion infection of Rov cells. J Virol 81 10786 10791
66. BeringueV
Le DurA
TixadorP
ReineF
LepourryL
2008 Prominent and persistent extraneural infection in human PrP transgenic mice infected with variant CJD. PLoS ONE 3 e1419 doi:10.1371/journal.pone.0001419
67. HeckerR
TaraboulosA
ScottM
PanKM
YangSL
1992 Replication of distinct scrapie prion isolates is region specific in brains of transgenic mice and hamsters. Genes Dev 6 1213 1228
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2010 Číslo 4
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- The Effect of Vaccination on the Evolution and Population Dynamics of Avian Paramyxovirus-1
- Reconstitution of SARS-Coronavirus mRNA Cap Methylation
- Deficiencies in Jasmonate-Mediated Plant Defense Reveal Quantitative Variation in Pathogenesis
- A Timescale for Evolution, Population Expansion, and Spatial Spread of an Emerging Clone of Methicillin-Resistant