#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Deficiencies in Jasmonate-Mediated Plant Defense Reveal Quantitative Variation in Pathogenesis


Despite the described central role of jasmonate signaling in plant defense against necrotrophic pathogens, the existence of intraspecific variation in pathogen capacity to activate or evade plant jasmonate-mediated defenses is rarely considered. Experimental infection of jasmonate-deficient and jasmonate-insensitive Arabidopsis thaliana with diverse isolates of the necrotrophic fungal pathogen Botrytis cinerea revealed pathogen variation for virulence inhibition by jasmonate-mediated plant defenses and induction of plant defense metabolites. Comparison of the transcriptional effects of infection by two distinct B. cinerea isolates showed only minor differences in transcriptional responses of wild-type plants, but notable isolate-specific transcript differences in jasmonate-insensitive plants. These transcriptional differences suggest B. cinerea activation of plant defenses that require plant jasmonate signaling for activity in response to only one of the two B. cinerea isolates tested. Thus, similar infection phenotypes observed in wild-type plants result from different signaling interactions with the plant that are likely integrated by jasmonate signaling.


Vyšlo v časopise: Deficiencies in Jasmonate-Mediated Plant Defense Reveal Quantitative Variation in Pathogenesis. PLoS Pathog 6(4): e32767. doi:10.1371/journal.ppat.1000861
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1000861

Souhrn

Despite the described central role of jasmonate signaling in plant defense against necrotrophic pathogens, the existence of intraspecific variation in pathogen capacity to activate or evade plant jasmonate-mediated defenses is rarely considered. Experimental infection of jasmonate-deficient and jasmonate-insensitive Arabidopsis thaliana with diverse isolates of the necrotrophic fungal pathogen Botrytis cinerea revealed pathogen variation for virulence inhibition by jasmonate-mediated plant defenses and induction of plant defense metabolites. Comparison of the transcriptional effects of infection by two distinct B. cinerea isolates showed only minor differences in transcriptional responses of wild-type plants, but notable isolate-specific transcript differences in jasmonate-insensitive plants. These transcriptional differences suggest B. cinerea activation of plant defenses that require plant jasmonate signaling for activity in response to only one of the two B. cinerea isolates tested. Thus, similar infection phenotypes observed in wild-type plants result from different signaling interactions with the plant that are likely integrated by jasmonate signaling.


Zdroje

1. HoweGA

2004 Jasmonates as signals in the wound response. J Plant Growth Regul 23 223 237

2. KodaY

1997 Possible involvement of jasmonates in various morphogenic events. Physiol Plant 100 639 646

3. Pena-CortesH

BarriosP

DortaF

PolancoV

SanchezC

2004 Involvement of jasmonic acid and derivatives in plant responses to pathogens and insects and in fruit ripening. J Plant Growth Regul 23 246 260

4. ThalerJS

OwenB

HigginsVJ

2004 The role of the jasmonate response in plant susceptibility to diverse pathogens with a range of lifestyles. Plant Physiol 135 530 538

5. ThommaB

EggermontK

BroekaertWF

CammueBPA

2000 Disease development of several fungi on Arabidopsis can be reduced by treatment with methyl jasmonate. Plant Physiol Biochem 38 421 427

6. TrusovY

RookesJE

ChakravortyD

ArmourD

SchenkPM

2006 Heterotrimeric G proteins facilitate Arabidopsis resistance to necrotrophic pathogens and are involved in jasmonate signaling. Plant Physiol 140 210 220

7. AdieB

ChicoJM

Rubio-SomozaI

SolanoR

2007 Modulation of plant defenses by ethylene. J Plant Growth Regul 26 160 177

8. AdieB

Perez-PerezJ

Perez-PerezMM

GodoyM

Sanchez-SerranoJJ

2007 ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell 19 1665 1681

9. AndersonJP

BadruzsaufariE

SchenkPM

MannersJM

DesmondOJ

2004 Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16 3460 3479

10. BeckersGJM

SpoelSH

2006 Fine-tuning plant defence signalling: Salicylate versus jasmonate. Plant Biol 8 1 10

11. de BruxellesGL

RobertsMR

2001 Signals regulating multiple responses to wounding and herbivores. Crit Rev Plant Sci 20 487 521

12. DevotoA

TurnerJG

2005 Jasmonate-regulated Arabidopsis stress signalling network. Physiol Plant 123 161 172

13. Robert-SeilaniantzA

NavarroL

BariR

JonesJD

2007 Pathological hormone imbalances. Curr Opin Plant Biol 10 372 379

14. ThalerJS

BostockRM

2004 Interactions between abscisic-acid-mediated responses and plant resistance to pathogens and insects. Ecology 85 48 58

15. Hammond-KosackKE

ParkerJE

2003 Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Curr Opin Biotechnol 14 177 193

16. LewisDH

1973 Concepts in fungal nutrition and the origin of biotrophy. Biol Rev 48 261 278

17. OliverRP

IpchoSVS

2004 Arabidopsis pathology breathes new life into the necrotrophs-vs.-biotrophs classification of fungal pathogens. Mol Plant Pathol 5 347 352

18. JonesJDG

DanglJL

2006 The plant immune system. Nature 444 323 329

19. WitPJGM

2007 Visions & reflections (minireview) - How plants recognize pathogens and defend themselves. Cellu Mol Life Sci 64 2726 2732

20. GlazebrookJ

2005 Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43 205 227

21. ThommaBPHJ

EggermontK

TierensKFMJ

BroekaertWF

1999 Requirement of functional ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol 121 1093 1101

22. ThommaBPHJ

EggermontK

PenninckxIAMA

Mauch-ManiB

VogelsangR

1998 Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci USA 95 15107 15111

23. StaalJ

KaliffM

DewaeleE

PerssonM

DixeliusC

2008 RLM3, a TIR domain encoding gene involved in broad-range immunity of Arabidopsis to necrotrophic fungal pathogens. Plant J 55 188 200

24. BentAF

MackeyD

2007 Elicitors, effectors, and R genes: The new paradigm and a lifetime supply of questions. Annu Rev Phytopathol 45 399 436

25. EllisJG

DoddsPN

LawrenceGJ

2007 Flax rust resistance gene specificity is based on direct resistance-avirulence protein interactions. Annu Rev Phytopathol 45 289 306

26. van OoijenG

van den BurgHA

CornelissenBJC

TakkenFLW

2007 Structure and function of resistance proteins in solanaceous plants. Annu Rev Phytopathol 45 43 72

27. DerckelJP

BaillieulF

ManteauS

AudranJC

HayeB

1999 Differential induction of grapevine defenses by two strains of Botrytis cinerea. Phytopathology 89 197 203

28. FerrariS

PlotnikovaJM

De LorenzoG

AusubelFM

2003 Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2 but not SID2, EDS5, or PAD4. Plant J 35 193 205

29. JeandetP

Douillt-BreuilAC

BessisR

DebordS

SbaghiM

2002 Phytoalexins from the vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J Agric Food Chem 50 2731 2741

30. KliebensteinDJ

RoweHC

DenbyKJ

2005 Secondary metabolites influence Arabidopsis/Botrytis interactions: variation in host production and pathogen sensitivity. Plant J 44 25 36

31. QuiddeT

ButtnerP

TudzynskiP

1999 Evidence for three different specific saponin-detoxifying activities in Botrytis cinerea and cloning and functional analysis of a gene coding for a putative avenacinase. Eur J Plant Pathol 105 273 283

32. BrooksDM

BenderCL

KunkelBN

2005 The Pseudomonas syringae phytotoxin coronatine promotes virulence by overcoming salicylic acid-dependent defences in Arabidopsis thaliana. Mol Plant Pathol 6 629 639

33. CumagunCJR

BowdenRL

JurgensonJE

LeslieJF

MiedanerT

2004 Genetic mapping of pathogenicity and aggressiveness of Gibberella zeae (Fusarium graminearum) toward wheat. Phytopathology 94 520 526

34. UppalapatiSR

IshigaY

WangdiT

KunkelBN

AnandA

2007 The phytotoxin coronatine contributes to pathogen fitness and is required for suppression of salicylic acid accumulation in tomato inoculated with Pseudomonas syringae pv. tomato DC3000. Mol Plant-Microbe Interact 20 955 965

35. HwangMSH

MorganRL

SarkarSF

WangPW

GuttmanDS

2005 Phylogenetic characterization of virulence and resistance phenotypes of Pseudomonas syringae. Applied and Environmental Microbiology 71 5182 5191

36. SiewersV

SmedsgaardJ

TudzynskiP

2004 The p450 monooxygenase BcABA1 is essential for abscisic acid biosynthesis in Botrytis cinerea. Appl Environ Microbiol 70 3868 3876

37. CristescuSM

De MartinisD

HekkertStL

ParkerDH

HarrenFJM

2002 Ethylene production by Botrytis cinerea in vitro and in tomatoes. Appl Environ Microbiol 68 5342 5350

38. EladY

WilliamsonB

TudzynskiP

DelenN

2004 Botrytis: Biology, Pathology and Control Dordrecht Kluwer Academic Publishers 428

39. PrinsTW

TudzynskiP

von TiedemannA

TudzynskiB

ten HaveA

2000 Infection strategies of Botrytis cinerea and related necrotrophic pathogens.

KronstadJ

Fungal Pathology Dordrecht, The Netherlands Kluwer Academic Publishers 32 64

40. WilliamsonB

TudzynskB

TudzynskiP

van KanJAL

2007 Botrytis cinerea: the cause of grey mould disease. Mol Plant Pathol 8 561 580

41. ParkJH

HalitschkeR

KimHB

BaldwinIT

FeldmannKA

2002 A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis. Plant J 31 1 12

42. XieD-X

FeysBF

JamesS

Nieto-RostroM

TurnerJG

1998 COI1: An Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280 1091 1094

43. KatsirL

ChungHS

KooAJK

HoweGA

2008 Jasmonate signaling: a conserved mechanism of hormone sensing. Curr Opin Plant Biol 11 428 435

44. CaloL

GarciaI

GotorC

RomeroLC

2006 Leaf hairs influence phytopathogenic fungus infection and confer an increased resistance when expressing a Trichoderma alpha-1,3-glucanase. J Exper Bot 57 3911 3920

45. ZhouN

TootleTL

GlazebrookJ

1999 Arabidopsis PAD3, a gene required for camalexin biosynthesis, encodes a putative cytochrome P450 monooxygenase. Plant Cell 11 2419 2428

46. ThommaB

NelissenI

EggermontK

BroekaertWF

1999 Deficiency in phytoalexin production causes enhanced susceptibility of Arabidopsis thaliana to the fungus Alternaria brassicicola. Plant J 19 163 171

47. BottcherC

WestphalL

SchmotzC

PradeE

ScheelD

2009 The multifunctional enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) converts cysteine-idole-3-acetonitrile to camalexin in the indole-3-acetonitrile metabolic network of Arabidopsis thaliana. Plant Cell 21 1830 1845

48. NafisiM

GoregaokerS

BotangaCJ

GlawischnigE

OlsenCE

2007 Arabidopsis cytochrome P450 monooxygenase 71A13 catalyzes the conversion of indole-3-acetaldoxime in camalexin synthesis. Plant Cell 19 2039 2052

49. GlawischnigE

2007 Camalexin. Phytochemistry 68 401 406

50. AbuQamarS

ChenX

DhawanR

BluhmB

SalmeronJ

2006 Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to Botrytis infection. Plant J 48 28 44

51. FerrariS

GallettiR

DenouxC

De LorenzoG

AusubelFM

2007 Resistance to Botrytis cinerea induced in Arabidopsis by elicitors is independent of salicylic acid, ethylene, or jasmonate signaling but requires PHYTOALEXIN DEFICIENT3. Plant Physiol 144 367 379

52. BergerS

Mitchell-OldsT

StotzHU

2002 Local and differential control of vegetative storage protein expression in response to herbivore damage in Arabidopsis thaliana. Physiol Plant 114 85 91

53. MannersJM

PenninckxI

VermaereK

KazanK

BrownRL

1998 The promoter of the plant defensin gene PDF1.2 from Arabidopsis is systemically activated by fungal pathogens and responds to methyl jasmonate but not to salicylic acid. Plant Mol Biol 38 1071 1080

54. ZhangP

FoersterH

TissierCP

MuellerL

PaleyS

2005 MetaCyc and AraCyc. Metabolic Pathway Databases for Plant Research. Plant Physiol 138 27 37

55. KliebensteinDJ

RoweHC

DenbyKJ

2005 Secondary metabolites influence Arabidopsis/Botrytis interactions: variation in host production and pathogen sensitivity. Plant J 44 25 36

56. DhawanR

LuoH

FoersterAM

AbuqamarS

DuHN

2009 HISTONE MONOUBIQUITINATION1 interacts with a subunit of the mediator complex and regulates defense against necrotrophic fungal pathogens in Arabidopsis. Plant Cell 21 1000 1019

57. MengisteT

ChenX

SalmeronJ

DietrichR

2003 The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. Plant Cell 15 2551 2565

58. VeroneseP

NakagamiH

BluhmB

AbuQamarS

ChenX

2006 The membrane-anchored BOTRYTIS-INDUCED KINASE1 plays distinct roles in Arabidopsis resistance to necrotrophic and biotrophic pathogens. Plant Cell 18 257 273

59. ZhengZY

Abu QamarS

ChenZX

MengisteT

2006 Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J 48 592 605

60. Gandia-HerreroF

LorenzA

LarsonT

GrahamIA

BowlesDJ

2008 Detoxification of the explosive 2,4,6-trinitrotoluene in Arabidopsis: discovery of bifunctional O- and C-glucosyltransferases. Plant J 56 963 974

61. KasajimaI

IdeY

HiraiMY

FujiwaraT

2007 Boron transcriptome analysis - profiles of boron nutrition-regulated genes and role of WRKY6 in regulation. 18th International Conference on Arabidopsis Research. Beijing, China

62. MaSS

GongQQ

BohnertHJ

2006 Dissecting salt stress pathways. J Exper Bot 57 1097 1107

63. ColemanJ

Blake-KalffM

DaviesE

1997 Detoxification of xenobiotics by plants: chemical modification and vacuolar compartmentation. Trends Plant Sci 2 144 151

64. TutejaN

2007 Abscisic Acid and abiotic stress signaling. Plant Signal Behav 2 135 138

65. Yamaguchi-ShinozakiK

ShinozakiK

2005 Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10 88 94

66. BednarekP

Pislewska-BednarekM

SvatosA

SchneiderB

DoubskyJ

2009 A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 323 101 106

67. ClayNK

AdioAM

DenouxC

JanderG

AusubelFM

2009 Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323 95 101

68. DienerAC

GaxiolaRA

FinkGR

2001 Arabidopsis ALF5, a Multidrug Efflux Transporter gene family member, confers resistance to toxins. Plant Cell 13 1625 1638

69. MagalhaesJV

LiuJ

GuimaraesCT

LanaUGP

AlvesVMC

2007 A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet 39 1156 1161

70. OmoteH

HiasaM

MatsumotoT

OtsukaM

MoriyamaY

2006 The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends in Pharmacological Sciences 27 587 593

71. PreM

AtallahM

ChampionA

De VosM

PieterseCMJ

2008 The AP2/ERF Domain Transcription Factor ORA59 Integrates Jasmonic Acid and Ethylene Signals in Plant Defense. Plant Physiol 147 1347 1357

72. Bies-EtheveN

Gaubier-ComellaP

DeburesA

LasserreE

JobetE

2008 Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana. Plant Mol Biol 67 107 124

73. SpoelSH

JohnsonJS

DongX

2007 Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc Natl Acad Sci USA 104 18842 18847

74. WalleyJW

RoweHC

XiaoYM

ChehabEW

KliebensteinDJ

2008 The chromatin remodeler SPLAYED regulates specific stress signaling pathways. PLoS Path 4 e1000237 doi:10.1371/journal.ppat.1000237

75. BrowseJ

2009 Jasmonate passes muster: A receptor and targets for the defense hormone. Annu Rev Plant Biol 60 183 205

76. ChicoJM

ChiniA

FonsecaS

SolanoR

2008 JAZ repressors set the rhythm in jasmonate signaling. Curr Opin Plant Biol 11 486 494

77. ChiniA

FonsecaS

FernandezG

AdieB

ChicoJM

2007 The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448 666 U664

78. StefanatoFL

Abou-MansourE

BuchalaA

KretschmerM

MosbachA

2009 The ABC transporter BcatrB from Botrytis cinerea exports camalexin and is a virulence factor on Arabidopsis thaliana. Plant J 58 499 510

79. GomezC

TerrierN

TorregrosaL

VialetS

Fournier-LevelA

2009 Grapevine MATE-type proteins act as vacuolar H+-dependent acylated anthocyanin transporters. Plant Physiol 150 402 415

80. NawrathC

HeckS

ParinthawongN

MetrauxJP

2002 EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family. Plant Cell 14 275 286

81. ShojiT

InaiK

YazakiY

SatoY

TakaseH

2009 Multidrug and Toxic Compound Extrusion-type transporters implicated in vacuolar sequestration of nicotine in tobacco roots. Plant Physiol 149 708 718

82. AudenaertK

De MeyerGB

HofteMM

2002 Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Plant Physiol 128 491 501

83. de Torres-ZabalaM

TrumanW

BennettMH

LafforgueG

MansfieldJW

2007 Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease. EMBO J 26 1434 1443

84. JakabG

CottierV

ToquinV

RigoliG

ZimmerliL

2001 beta-Aminobutyric acid-induced resistance in plants. Eur J Plant Pathol 107 29 37

85. OritaniT

KiyotaH

2003 Biosynthesis and metabolism of abscisic acid and related compounds. Nat Prod Rep 20 414 425

86. ZimmerliL

MetrauxJP

Mauch-ManiB

2001 beta-aminobutyric acid-induced protection of Arabidopsis against the necrotrophic fungus Botrytis cinerea. Plant Physiol 126 517 523

87. MikkelsenMD

HansenCH

WittstockU

HalkierBA

2000 Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. J Biol Chem 275 33712 33717

88. ThinesB

KatsirL

MelottoM

NiuY

MandaokarA

2007 JAZ repressor proteins are targets of the SCFCO11 complex during jasmonate signalling. Nature 448 661 U662

89. RoweHC

KliebensteinDJ

2007 Elevated genetic variation within virulence-associated Botrytis cinerea polygalacturonase loci. Mol Plant-Microbe Interact 20 1126 1137

90. AbramoffMD

MagelhaesPJ

RamSJ

2004 Image Processing with ImageJ. Biophoton Internatl 11 36 42

91. WeigelD

GlazebrookJ

2002 Arabidopsis, a Laboratory Manual New York Cold Spring Harbour Press

92. ClarkeJD

2009 Phenotypic Analysis of Arabidopsis Mutants: Diaminobenzidine Stain for Hydrogen Peroxide. Cold Spring Harbor Protocols Cold Spring Harbor, NY, USA Cold Spring Harbor Press pp. 10.1101/pdb.prot4981

93. RateDN

CuencaJV

BowmanGR

GuttmanDS

GreenbergJT

1999 The Gain-of-Function Arabidopsis acd6 Mutant Reveals Novel Regulation and Function of the Salicylic Acid Signaling Pathway in Controlling Cell Death, Defenses, and Cell Growth. Plant Cell 11 1695 1708

94. WalleyJW

CoughlanS

HudsonME

CovingtonMF

KaspiR

2007 Mechanical stress induces biotic and abiotic stress responses via a novel cis-element. PLoS Genet 3 e172 doi:10.1371/journal.pgen.0030172

95. CzechowskiT

StittM

AltmannT

UdvardiMK

ScheibleW-R

2005 Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139 5 17

96. BolstadBM

IrizarryRA

AstrandM

SpeedTP

2003 A comparison of normalization methods for high density oligonucleotide array data based on bias and variance. Bioinformatics 19 185 193

97. GentlemanRC

CareyVJ

BatesDM

BolstadBM

DettlingM

2004 Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5 R80

98. R_Development_Core_Team 2009 R: Language and Environment for Statistical Computing Vienna R Foundation for Statistical Computing

99. StoreyJD

2002 A direct approach to false discovery rates. J Royal Stat Soc Ser B 64 479 498

100. ObayashiT

HayashiS

SaekiM

OhtaH

KinoshitaK

2008 ATTED-II provides coexpressed gene networks for Arabidopsis. Nucl Acids Res DOI:10.1093/nar/gkn1807

101. O'ConnorTR

DyresonC

WyrickJJ

2005 Athena: a resource for rapid visualization and systematic analysis of Arabidopsis promoter sequences. Bioinformatics 21 4411 4413

102. BessireM

ChassotC

JacquatAC

HumphryM

BorelS

2007 A permeable cuticle in Arabidopsis leads to a strong resistance to Botrytis cinerea. EMBO J 26 2158 2168

103. RoweHC

KliebensteinDJ

2008 Complex genetics control natural variation in Arabidopsis thaliana resistance to Botrytis cinerea. Genetics 180 2237 2250

104. DenbyKJ

KumarP

KliebensteinDJ

2004 Identification of Botrytis cinerea susceptibility loci in Arabidopsis thaliana. Plant J 38 473 486

105. SchuheggerR

RauhutT

GlawischnigE

2007 Regulatory variability of camalexin biosynthesis. J Plant Physiol 164 636 644

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 4
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#