Reconstitution of SARS-Coronavirus mRNA Cap Methylation
SARS-coronavirus (SARS-CoV) genome expression depends on the synthesis of a set of mRNAs, which presumably are capped at their 5′ end and direct the synthesis of all viral proteins in the infected cell. Sixteen viral non-structural proteins (nsp1 to nsp16) constitute an unusually large replicase complex, which includes two methyltransferases putatively involved in viral mRNA cap formation. The S-adenosyl-L-methionine (AdoMet)-dependent (guanine-N7)-methyltransferase (N7-MTase) activity was recently attributed to nsp14, whereas nsp16 has been predicted to be the AdoMet-dependent (nucleoside-2′O)-methyltransferase. Here, we have reconstituted complete SARS-CoV mRNA cap methylation in vitro. We show that mRNA cap methylation requires a third viral protein, nsp10, which acts as an essential trigger to complete RNA cap-1 formation. The obligate sequence of methylation events is initiated by nsp14, which first methylates capped RNA transcripts to generate cap-0 7MeGpppA-RNAs. The latter are then selectively 2′O-methylated by the 2′O-MTase nsp16 in complex with its activator nsp10 to give rise to cap-1 7MeGpppA2′OMe-RNAs. Furthermore, sensitive in vitro inhibition assays of both activities show that aurintricarboxylic acid, active in SARS-CoV infected cells, targets both MTases with IC50 values in the micromolar range, providing a validated basis for anti-coronavirus drug design.
Vyšlo v časopise:
Reconstitution of SARS-Coronavirus mRNA Cap Methylation. PLoS Pathog 6(4): e32767. doi:10.1371/journal.ppat.1000863
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1000863
Souhrn
SARS-coronavirus (SARS-CoV) genome expression depends on the synthesis of a set of mRNAs, which presumably are capped at their 5′ end and direct the synthesis of all viral proteins in the infected cell. Sixteen viral non-structural proteins (nsp1 to nsp16) constitute an unusually large replicase complex, which includes two methyltransferases putatively involved in viral mRNA cap formation. The S-adenosyl-L-methionine (AdoMet)-dependent (guanine-N7)-methyltransferase (N7-MTase) activity was recently attributed to nsp14, whereas nsp16 has been predicted to be the AdoMet-dependent (nucleoside-2′O)-methyltransferase. Here, we have reconstituted complete SARS-CoV mRNA cap methylation in vitro. We show that mRNA cap methylation requires a third viral protein, nsp10, which acts as an essential trigger to complete RNA cap-1 formation. The obligate sequence of methylation events is initiated by nsp14, which first methylates capped RNA transcripts to generate cap-0 7MeGpppA-RNAs. The latter are then selectively 2′O-methylated by the 2′O-MTase nsp16 in complex with its activator nsp10 to give rise to cap-1 7MeGpppA2′OMe-RNAs. Furthermore, sensitive in vitro inhibition assays of both activities show that aurintricarboxylic acid, active in SARS-CoV infected cells, targets both MTases with IC50 values in the micromolar range, providing a validated basis for anti-coronavirus drug design.
Zdroje
1. RotaPA
ObersteMS
MonroeSS
NixWA
CampagnoliR
2003 Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300 1394 1399
2. GorbalenyaAE
EnjuanesL
ZiebuhrJ
SnijderEJ
2006 Nidovirales: evolving the largest RNA virus genome. Virus Res 117 17 37
3. SnijderEJ
BredenbeekPJ
DobbeJC
ThielV
ZiebuhrJ
2003 Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol 331 991 1004
4. ThielV
IvanovKA
PuticsA
HertzigT
SchelleB
2003 Mechanisms and enzymes involved in SARS coronavirus genome expression. J Gen Virol 84 2305 2315
5. SawickiSG
SawickiDL
SiddellSG
2007 A contemporary view of coronavirus transcription. J Virol 81 20 29
6. SnijderEJ
van der MeerY
Zevenhoven-DobbeJ
OnderwaterJJ
van der MeulenJ
2006 Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex. J Virol 80 5927 5940
7. PerlmanS
NetlandJ
2009 Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol 7 439 450
8. BakerSC
YokomoriK
DongS
CarlisleR
GorbalenyaAE
1993 Identification of the catalytic sites of a papain-like cysteine proteinase of murine coronavirus. J Virol 67 6056 6063
9. LuY
LuX
DenisonMR
1995 Identification and characterization of a serine-like proteinase of the murine coronavirus MHV-A59. J Virol 69 3554 3559
10. ImbertI
GuillemotJC
BourhisJM
BussettaC
CoutardB
2006 A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus. EMBO J 25 4933 4942
11. SawickiSG
SawickiDL
YounkerD
MeyerY
ThielV
2005 Functional and genetic analysis of coronavirus replicase-transcriptase proteins. PLoS Pathog 1 e39 doi:10.1371/journal.ppat.0010039
12. te VelthuisA
ArnoldJ
CameronG
van der WormS
SnijderE
2010 The RNA polymerase activity of SARS-coronavirus nsp12 is primer dependent. Nucleic Acids Res 38 203 214
13. IvanovKA
ZiebuhrJ
2004 Human coronavirus 229E nonstructural protein 13: characterization of duplex-unwinding, nucleoside triphosphatase, and RNA 5′-triphosphatase activities. J Virol 78 7833 7838
14. SeybertA
HegyiA
SiddellSG
ZiebuhrJ
2000 The human coronavirus 229E superfamily 1 helicase has RNA and DNA duplex-unwinding activities with 5′-to-3′ polarity. Rna 6 1056 1068
15. IvanovKA
HertzigT
RozanovM
BayerS
ThielV
2004 Major genetic marker of nidoviruses encodes a replicative endoribonuclease. Proc Natl Acad Sci U S A 101 12694 12699
16. MinskaiaE
HertzigT
GorbalenyaAE
CampanacciV
CambillauC
2006 Discovery of an RNA virus 3′->5′ exoribonuclease that is critically involved in coronavirus RNA synthesis. Proc Natl Acad Sci U S A 103 5108 5113
17. ChenY
CaiH
PanJ
XiangN
TienP
2009 Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. Proc Natl Acad Sci U S A 106 3484 3489
18. DecrolyE
ImbertI
CoutardB
BouvetM
SeliskoB
2008 Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (nucleoside-2′O)-methyltransferase activity. J Virol 82 8071 8084
19. von GrotthussM
WyrwiczLS
RychlewskiL
2003 mRNA cap-1 methyltransferase in the SARS genome. Cell 113 701 702
20. van HemertMJ
van den WormSH
KnoopsK
MommaasAM
GorbalenyaAE
2008 SARS-coronavirus replication/transcription complexes are membrane-protected and need a host factor for activity in vitro. PLoS Pathog 4 e1000054 doi:10.1371/journal.ppat.1000054
21. KnoopsK
KikkertM
van den WormSHE
Zevenhoven-DobbeJC
van der MeerY
2008 SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biol 6 e226 doi:10.1371/journal.pbio.0060226
22. LaiMM
PattonCD
StohlmanSA
1982 Further characterization of mRNA's of mouse hepatitis virus: presence of common 5′-end nucleotides. J Virol 41 557 565
23. LaiMM
StohlmanSA
1981 Comparative analysis of RNA genomes of mouse hepatitis viruses. J Virol 38 661 670
24. van VlietAL
SmitsSL
RottierPJ
de GrootRJ
2002 Discontinuous and non-discontinuous subgenomic RNA transcription in a nidovirus. EMBO J 21 6571 6580
25. FuruichiY
LaFiandraA
ShatkinAJ
1977 5′-Terminal structure and mRNA stability. Nature 266 235 239
26. ShumanS
2001 Structure, mechanism, and evolution of the mRNA capping apparatus. Prog Nucleic Acid Res Mol Biol 66 1 40
27. GuM
LimaCD
2005 Processing the message: structural insights into capping and decapping mRNA. Curr Opin Struct Biol 15 99 106
28. LangbergSR
MossB
1981 Post-transcriptional modifications of mRNA. Purification and characterization of cap I and cap II RNA (nucleoside-2′-)-methyltransferases from HeLa cells. J Biol Chem 256 10054 10060
29. WangHL
O'RearJ
StollarV
1996 Mutagenesis of the Sindbis virus nsP1 protein: effects on methyltransferase activity and viral infectivity. Virology 217 527 531
30. AlmazanF
DediegoML
GalanC
EscorsD
AlvarezE
2006 Construction of a severe acute respiratory syndrome coronavirus infectious cDNA clone and a replicon to study coronavirus RNA synthesis. J Virol 80 10900 10906
31. ChenP
HuT
JiangM
GuoD
2009 [Synthesis in Escherichia coli cells and characterization of the active exoribonuclease of severe acute respiratory syndrome coronavirus]. Mol Biol (Mosk) 43 446 454
32. RayD
ShahA
TilgnerM
GuoY
ZhaoY
2006 West Nile virus 5′-cap structure is formed by sequential guanine N-7 and ribose 2′-O methylations by nonstructural protein 5. J Virol 80 8362 8370
33. ZhouY
RayD
ZhaoY
DongH
RenS
2007 Structure and function of flavivirus NS5 methyltransferase. J Virol 81 3891 3903
34. IvanovKA
ThielV
DobbeJC
van der MeerY
SnijderEJ
2004 Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase. J Virol 78 5619 5632
35. ImbertI
SnijderEJ
DimitrovaM
GuillemotJC
LecineP
2008 The SARS-Coronavirus PLnc domain of nsp3 as a replication/transcription scaffolding protein. Virus Res 133 136 148
36. PanJ
PengX
GaoY
LiZ
LuX
2008 Genome-wide analysis of protein-protein interactions and involvement of viral proteins in SARS-CoV replication. PLoS ONE 3 e3299 doi:10.1371/journal.pone.0003299
37. JosephJS
SaikatenduKS
SubramanianV
NeumanBW
BroounA
2006 Crystal structure of nonstructural protein 10 from the severe acute respiratory syndrome coronavirus reveals a novel fold with two zinc-binding motifs. J Virol 80 7894 7901
38. SuD
LouZ
SunF
ZhaiY
YangH
2006 Dodecamer structure of severe acute respiratory syndrome coronavirus nonstructural protein nsp10. J Virol 80 7902 7908
39. DonaldsonEF
SimsAC
GrahamRL
DenisonMR
BaricRS
2007 Murine hepatitis virus replicase protein nsp10 is a critical regulator of viral RNA synthesis. J Virol 81 6356 6368
40. DonaldsonEF
GrahamRL
SimsAC
DenisonMR
BaricRS
2007 Analysis of murine hepatitis virus strain A59 temperature-sensitive mutant TS-LA6 suggests that nsp10 plays a critical role in polyprotein processing. J Virol 81 7086 7098
41. HeR
AdonovA
Traykova-AdonovaM
CaoJ
CuttsT
2004 Potent and selective inhibition of SARS coronavirus replication by aurintricarboxylic acid. Biochem Biophys Res Commun 320 1199 1203
42. EgloffMP
BenarrochD
SeliskoB
RometteJL
CanardB
2002 An RNA cap (nucleoside-2′-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. Embo J 21 2757 2768
43. ColemanTM
WangG
HuangF
2004 Superior 5′ homogeneity of RNA from ATP-initiated transcription under the T7 phi 2.5 promoter. Nucleic Acids Res 32 e14
44. BujnickiJM
RychlewskiL
2002 In silico identification, structure prediction and phylogenetic analysis of the 2′-O-ribose (cap 1) methyltransferase domain in the large structural protein of ssRNA negative-strand viruses. Protein Eng 15 101 108
45. DongH
ZhangB
ShiPY
2008 Flavivirus methyltransferase: a novel antiviral target. Antiviral Res 80 1 10
46. PughCS
BorchardtRT
StoneHO
1978 Sinefungin, a potent inhibitor of virion mRNA(guanine-7-)-methyltransferase, mRNA(nucleoside-2′-)-methyltransferase, and viral multiplication. J Biol Chem 253 4075 4077
47. PughCS
BorchardtRT
1982 Effects of S-adenosylhomocysteine analogues on vaccinia viral messenger ribonucleic acid synthesis and methylation. Biochemistry 21 1535 1541
48. SeliskoB
PeyraneFF
CanardB
AlvarezK
DecrolyE
2010 Biochemical characterization of the (nucleoside-2′O)-methyltransferase activity of dengue virus protein NS5 using purified capped RNA oligonucleotides 7MeGpppACn and GpppACn. J Gen Virol 91 112 121
49. LiJ
ChorbaJS
WhelanSP
2007 Vesicular stomatitis viruses resistant to the methylase inhibitor sinefungin upregulate RNA synthesis and reveal mutations that affect mRNA cap methylation. J Virol 81 4104 4115
50. KloorD
KarnahlK
KompfJ
2004 Characterization of glycine N-methyltransferase from rabbit liver. Biochem Cell Biol 82 369 374
51. WoodcockDM
AdamsJK
AllanRG
CooperIA
1983 Effect of several inhibitors of enzymatic DNA methylation on the in vivo methylation of different classes of DNA sequences in a cultured human cell line. Nucleic Acids Res 11 489 499
52. MilaniM
MastrangeloE
BollatiM
SeliskoB
DecrolyE
2009 Flaviviral methyltransferase/RNA interaction: structural basis for enzyme inhibition. Antiviral Res 83 28 34
53. LuzhkovVB
SeliskoB
NordqvistA
PeyraneF
DecrolyE
2007 Virtual screening and bioassay study of novel inhibitors for dengue virus mRNA cap (nucleoside-2′O)-methyltransferase. Bioorg Med Chem 15 7795 7802
54. MaoX
ShumanS
1994 Intrinsic RNA (guanine-7) methyltransferase activity of the vaccinia virus capping enzyme D1 subunit is stimulated by the D12 subunit. Identification of amino acid residues in the D1 protein required for subunit association and methyl group transfer. J Biol Chem 269 24472 24479
55. SchwerB
HausmannS
SchneiderS
ShumanS
2006 Poxvirus mRNA cap methyltransferase. Bypass of the requirement for the stimulatory subunit by mutations in the catalytic subunit and evidence for intersubunit allostery. J Biol Chem 281 18953 18960
56. De la PenaM
KyrieleisOJ
CusackS
2007 Structural insights into the mechanism and evolution of the vaccinia virus mRNA cap N7 methyl-transferase. EMBO J 26 4913 4925
57. KrishnaSS
MajumdarI
GrishinNV
2003 Structural classification of zinc fingers: survey and summary. Nucleic Acids Res 31 532 550
58. PradhanM
EstevePO
ChinHG
SamaranaykeM
KimGD
2008 CXXC domain of human DNMT1 is essential for enzymatic activity. Biochemistry 47 10000 10009
59. ShikauchiY
SaiuraA
KuboT
NiwaY
YamamotoJ
2009 SALL3 interacts with DNMT3A and shows the ability to inhibit CpG island methylation in hepatocellular carcinoma. Mol Cell Biol 29 1944 1958
60. ReinischKM
NibertML
HarrisonSC
2000 Structure of the reovirus core at 3.6 A resolution. Nature 404 960 967
61. LiJ
WangJT
WhelanSP
2006 A unique strategy for mRNA cap methylation used by vesicular stomatitis virus. Proc Natl Acad Sci U S A 103 8493 8498
62. EgloffMP
DecrolyE
MaletH
SeliskoB
BenarrochD
2007 Structural and functional analysis of methylation and 5′-RNA sequence requirements of short capped RNAs by the methyltransferase domain of dengue virus NS5. J Mol Biol 372 723 736
63. BollatiM
AlvarezK
AssenbergR
BarontiC
CanardB
2009 Structure and functionality in flavivirus NS-proteins: Perspectives for drug design. Antiviral Res
64. DongH
RayD
RenS
ZhangB
Puig-BasagoitiF
2007 Distinct RNA elements confer specificity to flavivirus RNA cap methylation events. J Virol 81 4412 4421
65. SchnierleBS
GershonPD
MossB
1994 Mutational analysis of a multifunctional protein, with mRNA 5′ cap-specific (nucleoside-2′-O-)-methyltransferase and 3′-adenylyltransferase stimulatory activities, encoded by vaccinia virus. J Biol Chem 269 20700 20706
66. SchnierleBS
GershonPD
MossB
1992 Cap-specific mRNA (nucleoside-O2′-)-methyltransferase and poly(A) polymerase stimulatory activities of vaccinia virus are mediated by a single protein. Proc Natl Acad Sci U S A 89 2897 2901
67. LuongoCL
ContrerasCM
FarsettaDL
NibertML
1998 Binding site for S-adenosyl-L-methionine in a central region of mammalian reovirus lambda2 protein. Evidence for activities in mRNA cap methylation. J Biol Chem 273 23773 23780
68. RamadeviN
BurroughsNJ
MertensPP
JonesIM
RoyP
1998 Capping and methylation of mRNA by purified recombinant VP4 protein of bluetongue virus. Proc Natl Acad Sci U S A 95 13537 13542
69. PeyraneF
SeliskoB
DecrolyE
VasseurJJ
BenarrochD
2007 High-yield production of short GpppA- and 7MeGpppA-capped RNAs and HPLC-monitoring of methyltransfer reactions at the guanine-N7 and adenosine-2'O positions. Nucleic Acids Res 35 e26
70. OsborneTC
ObianyoO
ZhangX
ChengX
ThompsonPR
2007 Protein arginine methyltransferase 1: positively charged residues in substrate peptides distal to the site of methylation are important for substrate binding and catalysis. Biochemistry 46 13370 13381
71. ChrebetGL
WisniewskiD
PerkinsAL
DengQ
KurtzMB
2005 Cell-based assays to detect inhibitors of fungal mRNA capping enzymes and characterization of sinefungin as a cap methyltransferase inhibitor. J Biomol Screen 10 355 364
72. CampanacciV
EgloffMP
LonghiS
FerronF
RancurelC
2003 Structural genomics of the SARS coronavirus: cloning, expression, crystallization and preliminary crystallographic study of the Nsp9 protein. Acta Crystallogr D Biol Crystallogr 59 1628 1631
73. DeLeanA
MunsonPJ
RodbardD
1978 Simultaneous analysis of families of sigmoidal curves: application to bioassay, radioligand assay, and physiological dose-response curves. Am J Physiol 235 E97 102
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2010 Číslo 4
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- The Effect of Vaccination on the Evolution and Population Dynamics of Avian Paramyxovirus-1
- Reconstitution of SARS-Coronavirus mRNA Cap Methylation
- Deficiencies in Jasmonate-Mediated Plant Defense Reveal Quantitative Variation in Pathogenesis
- A Timescale for Evolution, Population Expansion, and Spatial Spread of an Emerging Clone of Methicillin-Resistant