Increased Asymmetric Dimethylarginine in Severe Falciparum Malaria: Association with Impaired Nitric Oxide Bioavailability and Fatal Outcome
Asymmetrical dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase (NOS), is a predictor of mortality in critical illness. Severe malaria (SM) is associated with decreased NO bioavailability, but the contribution of ADMA to the pathogenesis of impaired NO bioavailability and adverse outcomes in malaria is unknown. In adults with and without falciparum malaria, we tested the hypotheses that plasma ADMA would be: 1) increased in proportion to disease severity, 2) associated with impaired vascular and pulmonary NO bioavailability and 3) independently associated with increased mortality. We assessed plasma dimethylarginines, exhaled NO concentrations and endothelial function in 49 patients with SM, 78 with moderately severe malaria (MSM) and 19 healthy controls (HC). Repeat ADMA and endothelial function measurements were performed in patients with SM. Multivariable regression was used to assess the effect of ADMA on mortality and NO bioavailability. Plasma ADMA was increased in SM patients (0.85 µM; 95% CI 0.74–0.96) compared to those with MSM (0.54 µM; 95%CI 0.5–0.56) and HCs (0.64 µM; 95%CI 0.58–0.70; p<0.001). ADMA was an independent predictor of mortality in SM patients with each micromolar elevation increasing the odds of death 18 fold (95% CI 2.0–181; p = 0.01). ADMA was independently associated with decreased exhaled NO (rs = −0.31) and endothelial function (rs = −0.32) in all malaria patients, and with reduced exhaled NO (rs = −0.72) in those with SM. ADMA is increased in SM and associated with decreased vascular and pulmonary NO bioavailability. Inhibition of NOS by ADMA may contribute to increased mortality in severe malaria.
Vyšlo v časopise:
Increased Asymmetric Dimethylarginine in Severe Falciparum Malaria: Association with Impaired Nitric Oxide Bioavailability and Fatal Outcome. PLoS Pathog 6(4): e32767. doi:10.1371/journal.ppat.1000868
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1000868
Souhrn
Asymmetrical dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase (NOS), is a predictor of mortality in critical illness. Severe malaria (SM) is associated with decreased NO bioavailability, but the contribution of ADMA to the pathogenesis of impaired NO bioavailability and adverse outcomes in malaria is unknown. In adults with and without falciparum malaria, we tested the hypotheses that plasma ADMA would be: 1) increased in proportion to disease severity, 2) associated with impaired vascular and pulmonary NO bioavailability and 3) independently associated with increased mortality. We assessed plasma dimethylarginines, exhaled NO concentrations and endothelial function in 49 patients with SM, 78 with moderately severe malaria (MSM) and 19 healthy controls (HC). Repeat ADMA and endothelial function measurements were performed in patients with SM. Multivariable regression was used to assess the effect of ADMA on mortality and NO bioavailability. Plasma ADMA was increased in SM patients (0.85 µM; 95% CI 0.74–0.96) compared to those with MSM (0.54 µM; 95%CI 0.5–0.56) and HCs (0.64 µM; 95%CI 0.58–0.70; p<0.001). ADMA was an independent predictor of mortality in SM patients with each micromolar elevation increasing the odds of death 18 fold (95% CI 2.0–181; p = 0.01). ADMA was independently associated with decreased exhaled NO (rs = −0.31) and endothelial function (rs = −0.32) in all malaria patients, and with reduced exhaled NO (rs = −0.72) in those with SM. ADMA is increased in SM and associated with decreased vascular and pulmonary NO bioavailability. Inhibition of NOS by ADMA may contribute to increased mortality in severe malaria.
Zdroje
1. SnowRW
GuerraCA
NoorAM
MyintHY
HaySI
2005 The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434 214 217
2. World Health Organization (2008) World Malaria Report
3. DayN
DondorpAM
2007 The Management of Patients with Severe Malaria. Am J Trop Med Hyg 77 Suppl 6 29 35
4. The SEAQUAMAT Trial Group 2005 Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial. Lancet 366 717 725
5. TurnerGD
MorrisonH
JonesM
DavisTM
LooareesuwanS
1994 An immunohistochemical study of the pathology of fatal malaria. Evidence for widespread endothelial activation and a potential role for intercellular adhesion molecule-1 in cerebral sequestration. Am J Pathol 145 1057 1069
6. YeoTW
LampahDA
GitawatiR
TjitraE
KenangalemE
2007 Impaired nitric oxide bioavailability and L-arginine reversible endothelial dysfunction in adults with falciparum malaria. J Exp Med 204 2693 2704
7. YeoTW
LampahDA
GitawatiR
TjitraE
KenangalemE
2008 Angiopoietin-2 is associated with decreased endothelial nitric oxide and poor clinical outcome in severe falciparum malaria. Proc Natl Acad Sci U S A 105 17097 17102
8. MinigoG
WoodberryT
PieraKA
SalwatiE
TjitraE
2009 Parasite-dependent expansion of TNF receptor II-positive regulatory T cells with enhanced suppressive activity in adults with severe malaria. PLoS Pathog 5 e1000402 doi:10.1371/journal.ppat.1000402
9. LovegroveFE
TangpukdeeN
OpokaRO
LaffertyEI
RajwansN
2009 Serum angiopoietin-1 and -2 levels discriminate cerebral malaria from uncomplicated malaria and predict clinical outcome in African children. PLoS ONE 4 e4912 doi:10.1371/journal.pone.0004912
10. LopansriBK
AnsteyNM
WeinbergJB
StoddardGJ
HobbsMR
2003 Low plasma arginine concentrations in children with cerebral malaria and decreased nitric oxide production. Lancet 361 676 678
11. AnsteyNM
WeinbergJB
HassanaliMY
MwaikamboED
ManyengaD
1996 Nitric oxide in Tanzanian children with malaria: inverse relationship between malaria severity and nitric oxide production/nitric oxide synthase type 2 expression. J Exp Med 184 557 567
12. HibbsJ
VavrinZ
TaintorR
1987 L-arginine is required for the expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells. J Immunol 138 550
13. YeoTW
LampahDA
GitawatiR
TjitraE
KenangalemE
2008 Recovery of endothelial function in severe falciparum malaria: relationship with improvement in plasma L-arginine and blood lactate concentrations. J Infect Dis 198 602 608
14. VallanceP
LeiperJ
2004 Cardiovascular biology of the asymmetric dimethylarginine:dimethylarginine dimethylaminohydrolase pathway. Arterioscler Thromb Vasc Biol 24 1023 1030
15. VallanceP
LeoneA
CalverA
CollierJ
MoncadaS
1992 Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 339 572 575
16. TeerlinkT
2005 ADMA metabolism and clearance. Vasc Med 10 Suppl 1 S73 81
17. NijveldtRJ
TeerlinkT
Van Der HovenB
SiroenMP
KuikDJ
2003 Asymmetrical dimethylarginine (ADMA) in critically ill patients: high plasma ADMA concentration is an independent risk factor of ICU mortality. Clin Nutr 22 23 30
18. NijveldtRJ
TeerlinkT
van LeeuwenPA
2003 The asymmetrical dimethylarginine (ADMA)-multiple organ failure hypothesis. Clin Nutr 22 99 104
19. JallowM
TeoYY
SmallKS
RockettKA
DeloukasP
2009 Genome-wide and fine-resolution association analysis of malaria in West Africa. Nat Genet 41 657 665
20. FanQ
MiaoJ
CuiL
2009 Characterization of protein arginine methyltransferase I from Plasmodium falciparum. Biochem J 421 107 118
21. TaylorWR
WhiteNJ
2002 Malaria and the lung. Clin Chest Med 23 457 468
22. BrettSJ
EvansTW
1998 Measurement of endogenous nitric oxide in the lungs of patients with the acute respiratory distress syndrome. Am J Respir Crit Care Med 157 993 997
23. McClintockDE
WareLB
EisnerMD
WickershamN
ThompsonBT
2007 Higher urine nitric oxide is associated with improved outcomes in patients with acute lung injury. Am J Respir Crit Care Med 175 256 262
24. MaguireGP
HandojoT
PainMC
KenangalemE
PriceRN
2005 Lung injury in uncomplicated and severe falciparum malaria: a longitudinal study in papua, Indonesia. J Infect Dis 192 1966 1974
25. YeoTW
LampahDA
TjitraE
GitawatiR
KenangalemE
2009 Relationship of cell-free hemoglobin to impaired endothelial nitric oxide bioavailability and perfusion in severe falciparum malaria. J Infect Dis 200 1522 1529
26. DayNP
PhuNH
MaiNT
ChauTT
LocPP
2000 The pathophysiologic and prognostic significance of acidosis in severe adult malaria. Crit Care Med 28 1833 1840
27. MolyneuxME
LooareesuwanS
MenziesIS
GraingerSL
PhillipsRE
1989 Reduced hepatic blood flow and intestinal malabsorption in severe falciparum malaria. Am J Trop Med Hyg 40 470 476
28. RichirMC
BouwmanRH
TeerlinkT
SiroenMP
de VriesTP
2008 The prominent role of the liver in the elimination of asymmetric dimethylarginine (ADMA) and the consequences of impaired hepatic function. JPEN J Parenter Enteral Nutr 32 613 621
29. LeiperJ
NandiM
TorondelB
Murray-RustJ
MalakiM
2007 Disruption of methylarginine metabolism impairs vascular homeostasis. Nat Med 13 198 203
30. O'DwyerMJ
DempseyF
CrowleyV
KelleherDP
McManusR
2006 Septic shock is correlated with asymmetrical dimethyl arginine levels, which may be influenced by a polymorphism in the dimethylarginine dimethylaminohydrolase II gene: a prospective observational study. Crit Care 10 R139
31. WangZ
TangWH
ChoL
BrennanDM
HazenSL
2009 Targeted Metabolomic Evaluation of Arginine Methylation and Cardiovascular Risks. Potential Mechanisms Beyond Nitric Oxide Synthase Inhibition. Arterioscler Thromb Vasc Biol Jun 18 (Epub ahead of print)
32. LopezA
LorenteJ
SteingrubJS
BakkerJ
McLuckieA
2004 Multicenter, randomized, placebo-controlled double blind study of the nitric oxide synthase inhibitor 546C88: Effect on survival in patients with septic shock. Crit Care Med 32 21 30
33. KielsteinJT
ImpraimB
SimmelS
Bode-BogerSM
TsikasD
2004 Cardiovascular Effects of Systemic Nitric Oxide Synthase Inhibition With Asymmetrical Dimethylarginine in Humans. Circulation 109 172 177
34. RichirMC
van LambalgenAA
TeerlinkT
WisselinkW
BloemenaE
2009 Low arginine/asymmetric dimethylarginine ratio deteriorates systemic hemodynamics and organ blood flow in a rat model. Crit Care Med 37 2010 2017
35. VaughnMW
KuoL
LiaoJC
1998 Effective diffusion distance of nitric oxide in the microcirculation. Am J Physiol 274 H1705 1714
36. DondorpAM
PongponratnE
WhiteNJ
2004 Reduced microcirculatory flow in severe falciparum malaria: pathophysiology and electron-microscopic pathology. Acta Trop 89 309 317
37. LowensteinCJ
MorrellCN
YamakuchiM
2005 Regulation of Weibel-Palade body exocytosis. Trends Cardiovasc Med 15 302 308
38. De CaterinaR
LibbyP
PengHB
ThannickalVJ
RajavashisthTB
1995 Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest 96 60 68
39. HinderF
StubbeHD
Van AkenH
WaurickR
BookeM
1999 Role of nitric oxide in sepsis-associated pulmonary edema. Am J Respir Crit Care Med 159 252 257
40. BulauP
ZakrzewiczD
KitowskaK
LeiperJ
GuntherA
2007 Analysis of methylarginine metabolism in the cardiovascular system identifies the lung as a major source of ADMA. Am J Physiol Lung Cell Mol Physiol 292 L18 24
41. KielsteinJT
Bode-BogerSM
HesseG
Martens-LobenhofferJ
TakacsA
2005 Asymmetrical dimethylarginine in idiopathic pulmonary arterial hypertension. Arterioscler Thromb Vasc Biol 25 1414 1418
42. NohriaA
Gerhard-HermanM
CreagerMA
HurleyS
MitraD
2006 Role of nitric oxide in the regulation of digital pulse volume amplitude in humans. J Appl Physiol 101 545 548
43. AnthonyS
LeiperJ
VallanceP
2005 Endogenous production of nitric oxide synthase inhibitors. Vasc Med 10 Suppl 1 S3 9
44. KaryanaM
BurdarmL
YeungS
KenangalemE
WarikerN
2008 Malaria morbidity in Papua Indonesia, an area with multidrug resistant Plasmodium vivax and Plasmodium falciparum. Malar J 7 148
45. RatcliffA
SiswantoroH
KenangalemE
WuwungM
BrockmanA
2007 Therapeutic response of multidrug-resistant Plasmodium falciparum and P. vivax to chloroquine and sulfadoxine-pyrimethamine in southern Papua, Indonesia. Trans R Soc Trop Med Hyg 101 351 359
46. JonesCE
DarcyCJ
WoodberryT
AnsteyNM
McNeilYR
2010 HPLC analysis of asymmetric dimethylarginine, symmetric dimethylarginine,homoarginine and arginine in small plasma volumes using a Gemini-NX column at high pH. Journal of Chromatography B Analyt Technol Biomed Life Sci 878 8 12
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2010 Číslo 4
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- The Effect of Vaccination on the Evolution and Population Dynamics of Avian Paramyxovirus-1
- Reconstitution of SARS-Coronavirus mRNA Cap Methylation
- Deficiencies in Jasmonate-Mediated Plant Defense Reveal Quantitative Variation in Pathogenesis
- A Timescale for Evolution, Population Expansion, and Spatial Spread of an Emerging Clone of Methicillin-Resistant