#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A Negative Feedback Modulator of Antigen Processing Evolved from a Frameshift in the Cowpox Virus Genome


Virus-infected or malignant transformed cells are eliminated by cytotoxic T lymphocytes, which recognize antigenic peptide epitopes in complex with major histocompatibility complex class I (MHC I) molecules at the cell surface. The majority of such peptides are derived from proteasomal degradation in the cytosol and are then translocated into the ER lumen in an energy-consuming reaction via the transporter associated with antigen processing (TAP), which delivers the peptides onto MHC I molecules as final acceptors. Viruses have evolved sophisticated strategies to escape this immune surveillance. Here we show that the cowpox viral protein CPXV012 inhibits the ER peptide translocation machinery by allosterically blocking ATP binding and hydrolysis by TAP. The short ER resident active domain of the viral protein evolved from a reading frame shift in the cowpox virus genome and exploits the ER-lumenal negative feedback peptide sensor of TAP. This CPXV012-induced conformational arrest of TAP is signaled by a unique communication across the ER membrane to the cytosolic motor domains of the peptide pump. Furthermore, this study provides the rare opportunity to decipher on a molecular level how nature plays hide and seek with a pathogen and its host.


Vyšlo v časopise: A Negative Feedback Modulator of Antigen Processing Evolved from a Frameshift in the Cowpox Virus Genome. PLoS Pathog 10(12): e32767. doi:10.1371/journal.ppat.1004554
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004554

Souhrn

Virus-infected or malignant transformed cells are eliminated by cytotoxic T lymphocytes, which recognize antigenic peptide epitopes in complex with major histocompatibility complex class I (MHC I) molecules at the cell surface. The majority of such peptides are derived from proteasomal degradation in the cytosol and are then translocated into the ER lumen in an energy-consuming reaction via the transporter associated with antigen processing (TAP), which delivers the peptides onto MHC I molecules as final acceptors. Viruses have evolved sophisticated strategies to escape this immune surveillance. Here we show that the cowpox viral protein CPXV012 inhibits the ER peptide translocation machinery by allosterically blocking ATP binding and hydrolysis by TAP. The short ER resident active domain of the viral protein evolved from a reading frame shift in the cowpox virus genome and exploits the ER-lumenal negative feedback peptide sensor of TAP. This CPXV012-induced conformational arrest of TAP is signaled by a unique communication across the ER membrane to the cytosolic motor domains of the peptide pump. Furthermore, this study provides the rare opportunity to decipher on a molecular level how nature plays hide and seek with a pathogen and its host.


Zdroje

1. VossenMT, WesterhoutEM, Soderberg-NauclerC, WiertzEJ (2002) Viral immune evasion: a masterpiece of evolution. Immunogenetics 54: 527–542.

2. BrodskyFM (1999) Stealth, sabotage and exploitation. Immunol Rev 168: 5–11.

3. HansenTH, BouvierM (2009) MHC class I antigen presentation: learning from viral evasion strategies. Nat Rev Immunol 9: 503–513.

4. AbendrothA, ArvinA (1999) Varicella-zoster virus immune evasion. Immunol Rev 168: 143–156.

5. BlumJS, WearschPA, CresswellP (2013) Pathways of antigen processing. Annu Rev Immunol 31: 443–473.

6. OuwendijkWJ, MahalingamR, de SwartRL, HaagmansBL, van AmerongenG, et al. (2013) T-Cell tropism of simian varicella virus during primary infection. PLoS Pathog 9: e1003368.

7. VoigtS, MesciA, EttingerJ, FineJH, ChenP, et al. (2007) Cytomegalovirus evasion of innate immunity by subversion of the NKR-P1B:Clr-b missing-self axis. Immunity 26: 617–627.

8. NeefjesJJ, HämmerlingGJ, MomburgF (1993) Folding and assembly of major histocompatibility complex class I heterodimers in the endoplasmic reticulum of intact cells precedes the binding of peptide. J Exp Med 178: 1971–1980.

9. ParcejD, TampéR (2010) ABC proteins in antigen translocation and viral inhibition. Nat Chem Biol 6: 572–580.

10. HulpkeS, TampéR (2013) The MHC I loading complex: a multitasking machinery in adaptive immunity. Trends Biochem Sci 38: 412–420.

11. KochJ, GuntrumR, HeintkeS, KyritsisC, TampéR (2004) Functional dissection of the transmembrane domains of the transporter associated with antigen processing (TAP). J Biol Chem 279: 10142–10147.

12. ProckoE, RaghuramanG, WileyDC, RaghavanM, GaudetR (2005) Identification of domain boundaries within the N-termini of TAP1 and TAP2 and their importance in tapasin binding and tapasin-mediated increase in peptide loading of MHC class I. Immunol Cell Biol 83: 475–482.

13. HulpkeS, TomiokaM, KremmerE, UedaK, AbeleR, et al. (2012) Direct evidence that the N-terminal extensions of the TAP complex act as autonomous interaction scaffolds for the assembly of the MHC I peptide-loading complex. Cell Mol Life Sci 69: 3317–3327.

14. HulpkeS, BaldaufC, TampéR (2012) Molecular architecture of the MHC I peptide-loading complex: one tapasin molecule is essential and sufficient for antigen processing. FASEB J 26: 5071–5080.

15. AlzhanovaD, EdwardsDM, HammarlundE, ScholzIG, HorstD, et al. (2009) Cowpox virus inhibits the transporter associated with antigen processing to evade T cell recognition. Cell Host Microbe 6: 433–445.

16. ByunM, VerweijMC, PickupDJ, WiertzEJ, HansenTH, et al. (2009) Two mechanistically distinct immune evasion proteins of cowpox virus combine to avoid antiviral CD8 T cells. Cell Host Microbe 6: 422–432.

17. VorouRM, PapavassiliouVG, PierroutsakosIN (2008) Cowpox virus infection: an emerging health threat. Curr Opin Infect Dis 21: 153–156.

18. BourquainD, DabrowskiPW, NitscheA (2013) Comparison of host cell gene expression in cowpox, monkeypox or vaccinia virus-infected cells reveals virus-specific regulation of immune response genes. Virol J 10: 61.

19. CzernyCP, Eis-HubingerAM, MayrA, SchneweisKE, PfeiffB (1991) Animal poxviruses transmitted from cat to man: current event with lethal end. Zentralbl Veterinarmed B 38: 421–431.

20. PelkonenPM, TarvainenK, HynninenA, KallioER, HenttonenK, et al. (2003) Cowpox with severe generalized eruption, Finland. Emerg Infect Dis 9: 1458–1461.

21. AhnK, MeyerTH, UebelS, SempéP, DjaballahH, et al. (1996) Molecular mechanism and species specificity of TAP inhibition by herpes simplex virus ICP47. EMBO J 15: 3247–3255.

22. TomazinR, HillAB, JugovicP, YorkI, van EndertP, et al. (1996) Stable binding of the herpes simplex virus ICP47 protein to the peptide binding site of TAP. EMBO J 15: 3256–3266.

23. AisenbreyC, SizunC, KochJ, HergetM, AbeleR, et al. (2006) Structure and dynamics of membrane-associated ICP47, a viral inhibitor of the MHC I antigen-processing machinery. J Biol Chem 281: 30365–30372.

24. HewittEW, GuptaSS, LehnerPJ (2001) The human cytomegalovirus gene product US6 inhibits ATP binding by TAP. EMBO J 20: 387–396.

25. KyritsisC, GorbulevS, HutschenreiterS, PawlitschkoK, AbeleR, et al. (2001) Molecular mechanism and structural aspects of transporter associated with antigen processing inhibition by the cytomegalovirus protein US6. J Biol Chem 276: 48031–48039.

26. RessingME, KeatingSE, van LeeuwenD, Koppers-LalicD, PappworthIY, et al. (2005) Impaired transporter associated with antigen processing-dependent peptide transport during productive EBV infection. J Immunol 174: 6829–6838.

27. HorstD, van LeeuwenD, CroftNP, GarstkaMA, HislopAD, et al. (2009) Specific targeting of the EBV lytic phase protein BNLF2a to the transporter associated with antigen processing results in impairment of HLA class I-restricted antigen presentation. J Immunol 182: 2313–2324.

28. CroftNP, Shannon-LoweC, BellAI, HorstD, KremmerE, et al. (2009) Stage-specific inhibition of MHC class I presentation by the Epstein-Barr virus BNLF2a protein during virus lytic cycle. PLoS Pathog 5: e1000490.

29. WyciskAI, LinJ, LochS, HobohmK, FunkeJ, et al. (2011) Epstein-Barr viral BNLF2a protein hijacks the tail-anchored protein insertion machinery to block antigen processing by the transport complex TAP. J Biol Chem 286: 41402–41412.

30. McCoyWHt, WangX, YokoyamaWM, HansenTH, FremontDH (2013) Cowpox virus employs a two-pronged strategy to outflank MHCI antigen presentation. Mol Immunol 55: 156–158.

31. DemirelO, JanI, WoltersD, BlanzJ, SaftigP, et al. (2012) The lysosomal polypeptide transporter TAPL is stabilized by interaction with LAMP-1 and LAMP-2. J Cell Sci 125: 4230–4240.

32. HorstD, FavaloroV, VilardiF, van LeeuwenHC, GarstkaMA, et al. (2011) EBV protein BNLF2a exploits host tail-anchored protein integration machinery to inhibit TAP. J Immunol 186: 3594–3605.

33. LacailleVG, AndrolewiczMJ (1998) Herpes simplex virus inhibitor ICP47 destabilizes the transporter associated with antigen processing (TAP) heterodimer. J Biol Chem 273: 17386–17390.

34. CarrollDS, EmersonGL, LiY, SammonsS, OlsonV, et al. (2011) Chasing Jenner's vaccine: revisiting cowpox virus classification. PLoS One 6: e23086.

35. ShchelkunovSN, SafronovPF, TotmeninAV, PetrovNA, RyazankinaOI, et al. (1998) The genomic sequence analysis of the left and right species-specific terminal region of a cowpox virus strain reveals unique sequences and a cluster of intact ORFs for immunomodulatory and host range proteins. Virology 243: 432–460.

36. GubserC, HueS, KellamP, SmithGL (2004) Poxvirus genomes: a phylogenetic analysis. J Gen Virol 85: 105–117.

37. UebelS, KraasW, KienleS, WiesmullerKH, JungG, et al. (1997) Recognition principle of the TAP transporter disclosed by combinatorial peptide libraries. Proc Natl Acad Sci U S A 94: 8976–8981.

38. GorbulevS, AbeleR, TampéR (2001) Allosteric crosstalk between peptide-binding, transport, and ATP hydrolysis of the ABC transporter TAP. Proc Natl Acad Sci U S A 98: 3732–3737.

39. SchumacherTN, KantesariaDV, HeemelsMT, Ashton-RickardtPG, ShepherdJC, et al. (1994) Peptide length and sequence specificity of the mouse TAP1/TAP2 translocator. J Exp Med 179: 533–540.

40. SchölzC, ParcejD, EjsingCS, RobenekH, UrbatschIL, et al. (2011) Specific lipids modulate the transporter associated with antigen processing (TAP). J Biol Chem 286: 13346–13356.

41. GrossmannN, VakkasogluAS, HulpkeS, AbeleR, GaudetR, et al. (2014) Mechanistic determinants of the directionality and energetics of active export by a heterodimeric ABC transporter. Nat Commun 5: 5419.

42. RevillezaMJ, WangR, MansJ, HongM, NatarajanK, et al. (2011) How the virus outsmarts the host: function and structure of cytomegalovirus MHC-I-like molecules in the evasion of natural killer cell surveillance. J Biomed Biotechnol 2011: 724607.

43. RessingME, LuteijnRD, HorstD, WiertzEJ (2013) Viral interference with antigen presentation: trapping TAP. Mol Immunol 55: 139–142.

44. LehnerPJ, HewittEW, RömischK (2000) Antigen presentation: peptides and proteins scramble for the exit. Curr Biol 10: R839–842.

45. ToddDJ, LeeAH, GlimcherLH (2008) The endoplasmic reticulum stress response in immunity and autoimmunity. Nat Rev Immunol 8: 663–674.

46. UlianichL, TerrazzanoG, AnnunziatellaM, RuggieroG, BeguinotF, et al. (2011) ER stress impairs MHC Class I surface expression and increases susceptibility of thyroid cells to NK-mediated cytotoxicity. Biochim Biophys Acta 1812: 431–438.

47. BartoszewskiR, BrewerJW, RabA, CrossmanDK, BartoszewskaS, et al. (2011) The unfolded protein response (UPR)-activated transcription factor X-box-binding protein 1 (XBP1) induces microRNA-346 expression that targets the human antigen peptide transporter 1 (TAP1) mRNA and governs immune regulatory genes. J Biol Chem 286: 41862–41870.

48. ShepherdJC, SchumacherTN, Ashton-RickardtPG, ImaedaS, PloeghHL, et al. (1993) TAP1-dependent peptide translocation in vitro is ATP dependent and peptide selective. Cell 74: 577–584.

49. KoopmannJO, AlbringJ, HuterE, BulbucN, SpeeP, et al. (2000) Export of antigenic peptides from the endoplasmic reticulum intersects with retrograde protein translocation through the Sec61p channel. Immunity 13: 117–127.

50. SeetBT, JohnstonJB, BrunettiCR, BarrettJW, EverettH, et al. (2003) Poxviruses and immune evasion. Annu Rev Immunol 21: 377–423.

51. ByunM, WangX, PakM, HansenTH, YokoyamaWM (2007) Cowpox virus exploits the endoplasmic reticulum retention pathway to inhibit MHC class I transport to the cell surface. Cell Host Microbe 2: 306–315.

52. DasguptaA, HammarlundE, SlifkaMK, FruhK (2007) Cowpox virus evades CTL recognition and inhibits the intracellular transport of MHC class I molecules. J Immunol 178: 1654–1661.

53. McCoyWHt, WangX, YokoyamaWM, HansenTH, FremontDH (2012) Structural mechanism of ER retrieval of MHC class I by cowpox. PLoS Biol 10: e1001432.

54. GaineyMD, RivenbarkJG, ChoH, YangL, YokoyamaWM (2012) Viral MHC class I inhibition evades CD8+ T-cell effector responses in vivo but not CD8+ T-cell priming. Proc Natl Acad Sci U S A 109: E3260–3267.

55. CampbellKS, HasegawaJ (2013) Natural killer cell biology: an update and future directions. J Allergy Clin Immunol 132: 536–544.

56. LjunggrenHG, KarreK (1990) In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol Today 11: 237–244.

57. CampbellJA, TrossmanDS, YokoyamaWM, CarayannopoulosLN (2007) Zoonotic orthopoxviruses encode a high-affinity antagonist of NKG2D. J Exp Med 204: 1311–1317.

58. RauletDH (2003) Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol 3: 781–790.

59. IizukaK, NaidenkoOV, PlougastelBF, FremontDH, YokoyamaWM (2003) Genetically linked C-type lectin-related ligands for the NKRP1 family of natural killer cell receptors. Nat Immunol 4: 801–807.

60. CarlyleJR, JamiesonAM, GasserS, ClinganCS, AraseH, et al. (2004) Missing self-recognition of Ocil/Clr-b by inhibitory NKR-P1 natural killer cell receptors. Proc Natl Acad Sci U S A 101: 3527–3532.

61. LuteijnRD, HoelenH, KruseE, van LeeuwenWF, GrootensJ, et al. (2014) Cowpox virus protein CPXV012 eludes CTLs by blocking ATP binding to TAP. J Immunol 193: 1578–1589.

62. ParcejD, GuntrumR, SchmidtS, HinzA, TampéR (2013) Multicolour fluorescence-detection size-exclusion chromatography for structural genomics of membrane multiprotein complexes. PLoS One 8: e67112.

63. HergetM, KreissigN, KolbeC, SchölzC, TampéR, et al. (2009) Purification and reconstitution of the antigen transport complex TAP: a prerequisite for determination of peptide stoichiometry and ATP hydrolysis. J Biol Chem 284: 33740–33749.

64. MeyerTH, van EndertPM, UebelS, EhringB, TampéR (1994) Functional expression and purification of the ABC transporter complex associated with antigen processing (TAP) in insect cells. FEBS Lett 351: 443–447.

65. NijenhuisM, HämmerlingGJ (1996) Multiple regions of the transporter associated with antigen processing (TAP) contribute to its peptide binding site. J Immunol 157: 5467–5477.

66. AbaciogluYH, FoutsTR, LamanJD, ClaassenE, PincusSH, et al. (1994) Epitope mapping and topology of baculovirus-expressed HIV-1 gp160 determined with a panel of murine monoclonal antibodies. AIDS Res Hum Retroviruses 10: 371–381.

67. StamNJ, SpitsH, PloeghHL (1986) Monoclonal antibodies raised against denatured HLA-B locus heavy chains permit biochemical characterization of certain HLA-C locus products. J Immunol 137: 2299–2306.

68. SaksenaS, ShaoY, BraunagelSC, SummersMD, JohnsonAE (2004) Cotranslational integration and initial sorting at the endoplasmic reticulum translocon of proteins destined for the inner nuclear membrane. Proc Natl Acad Sci U S A 101: 12537–12542.

69. HenkelRD, VandeBergJL, WalshRA (1988) A microassay for ATPase. Anal Biochem 169: 312–318.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2014 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#