#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Brothers in Arms: Th17 and Treg Responses in Immunity


article has not abstract


Vyšlo v časopise: Brothers in Arms: Th17 and Treg Responses in Immunity. PLoS Pathog 10(12): e32767. doi:10.1371/journal.ppat.1004456
Kategorie: Pearls
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004456

Souhrn

article has not abstract


Zdroje

1. Hernández-SantosN, GaffenSL (2012) Th17 cells in immunity to Candida albicans. Cell Host Microbe 11: 425–435.

2. HupplerAR, BishuS, GaffenSL (2012) Mucocutaneous candidiasis: the IL-17 pathway and implications for targeted immunotherapy. Arthritis Res Ther 14: 217.

3. PuelA, CypowyjS, BustamanteJ, WrightJF, LiuL, et al. (2011) Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 332: 65–68.

4. BoissonB, WangC, PedergnanaV, WuL, CypowyjS, et al. (2013) An ACT1 mutation selectively abolishes interleukin-17 responses in humans with chronic mucocutaneous candidiasis. Immunity 39: 676–686.

5. ContiHR, ShenF, NayyarN, StocumE, SunJN, et al. (2009) Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J Exp Med 206: 299–311.

6. HoAW, ShenF, ContiHR, PatelN, ChildsEE, et al. (2010) IL-17RC is required for immune signaling via an extended SEF/IL-17R signaling domain in the cytoplasmic tail. J Immunol 185: 1063–1070.

7. FerreiraMC, WhibleyN, MamoAJ, SiebenlistU, ChanYR, et al. (2014) Interleukin-17-induced protein lipocalin 2 is dispensable for immunity to oral candidiasis. Infect Immun 82: 1030–1035.

8. KagamiS, RizzoHL, KurtzSE, MillerLS, BlauveltA (2010) IL-23 and IL-17A, but not IL-12 and IL-22, are required for optimal skin host defense against Candida albicans. J Immunol 185: 5453–5462.

9. YanoJ, KollsJK, HappelKI, WormleyF, WozniakKL, et al. (2012) The acute neutrophil response mediated by S100 alarmins during vaginal Candida infections is independent of the Th17-pathway. PLoS ONE 7: e46311.

10. PietrellaD, RachiniA, PinesM, PandeyN, MosciP, et al. (2011) Th17 cells and IL-17 in protective immunity to vaginal candidiasis. PLoS ONE 6: e22770.

11. PfallerMA, DiekemaDJ (2010) Epidemiology of invasive mycoses in North America. Crit Rev Microbiol 36: 1–53.

12. HuangW, NaL, FidelPL, SchwarzenbergerP (2004) Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J Infect Dis 190: 624–631.

13. SaijoS, IkedaS, YamabeK, KakutaS, IshigameH, et al. (2010) Dectin-2 recognition of alpha-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity 32: 681–691.

14. van de VeerdonkFL, KullbergBJ, VerschuerenIC, HendriksT, van der MeerJW, et al. (2010) Differential effects of IL-17 pathway in disseminated candidiasis and zymosan-induced multiple organ failure. Shock 34: 407–411.

15. GlockerEO, HennigsA, NabaviM, SchafferAA, WoellnerC, et al. (2009) A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med 361: 1727–1735.

16. MiossecP, KollsJK (2012) Targeting IL-17 and TH17 cells in chronic inflammation. Nat Rev Drug Discov 11: 763–776.

17. HupplerAR, ContiHR, Hernandez-SantosN, DarvilleT, BiswasPS, et al. (2014) Role of neutrophils in IL-17-dependent immunity to mucosal candidiasis. J Immunol 192: 1745–1752.

18. FulurijaA, AshmanRB, PapadimitriouJM (1996) Neutrophil depletion increases susceptibility to systemic and vaginal candidiasis in mice, and reveals differences between brain and kidney in mechanisms of host resistance. Microbiology 142: 3487–3496.

19. ContiHR, BakerO, FreemanAF, JangWS, HollandSM, et al. (2011) New mechanism of oral immunity to mucosal candidiasis in hyper-IgE syndrome. Mucosal Immunol 4: 448–455.

20. Hernandez-SantosN, HupplerAR, PetersonAC, KhaderSA, McKennaKC, et al. (2013) Th17 cells confer long-term adaptive immunity to oral mucosal Candida albicans infections. Mucosal Immunol 6: 900–910.

21. GlockerE, GrimbacherB (2010) Chronic mucocutaneous candidiasis and congenital susceptibility to Candida. Curr Opin Allergy Clin Immunol 10: 542–550.

22. BärE, GladiatorA, BastidasS, RoschitzkiB, Acha-OrbeaH, et al. (2012) A novel Th cell epitope of Candida albicans mediates protection from fungal infection. J Immunol 188: 5636–5643.

23. CuaDJ, TatoCM (2010) Innate IL-17-producing cells: the sentinels of the immune system. Nat Rev Immunol 10: 479–489.

24. GladiatorA, WanglerN, Trautwein-WeidnerK, LeibundGut-LandmannS (2013) Cutting edge: IL-17-secreting innate lymphoid cells are essential for host defense against fungal infection. J Immunol 190: 521–525.

25. PandiyanP, ContiHR, ZhengL, PetersonAC, MathernDR, et al. (2011) CD4(+)CD25(+)Foxp3(+) regulatory T cells promote Th17 cells in vitro and enhance host resistance in mouse Candida albicans Th17 cell infection model. Immunity 34: 422–434.

26. ContiHR, PetersonAC, BraneL, HupplerAR, Hernández-SantosN, et al. (2014) Oral-resident ‘natural’ Th17 cells and γδ T cells control opportunistic Candida albicans infections. J Exp Med In press

27. VignaliDA, CollisonLW, WorkmanCJ (2008) How regulatory T cells work. Nat Rev Immunol 8: 523–532.

28. JosefowiczSZ, LuLF, RudenskyAY (2012) Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 30: 531–564.

29. FultonRB, MeyerholzDK, VargaSM (2010) Foxp3+ CD4 regulatory T cells limit pulmonary immunopathology by modulating the CD8 T cell response during respiratory syncytial virus infection. J Immunol 185: 2382–2392.

30. HesseM, PiccirilloCA, BelkaidY, PruferJ, Mentink-KaneM, et al. (2004) The pathogenesis of schistosomiasis is controlled by cooperating IL-10-producing innate effector and regulatory T cells. J Immunol 172: 3157–3166.

31. BelkaidY, PiccirilloCA, MendezS, ShevachEM, SacksDL (2002) CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420: 502–507.

32. Scott-BrowneJP, ShafianiS, Tucker-HeardG, Ishida-TsubotaK, FontenotJD, et al. (2007) Expansion and function of Foxp3-expressing T regulatory cells during tuberculosis. J Exp Med 204: 2159–2169.

33. LundJM, HsingL, PhamTT, RudenskyAY (2008) Coordination of early protective immunity to viral infection by regulatory T cells. Science 320: 1220–1224.

34. De LucaA, MontagnoliC, ZelanteT, BonifaziP, BozzaS, et al. (2007) Functional yet balanced reactivity to Candida albicans requires TRIF, MyD88, and IDO-dependent inhibition of Rorc. J Immunol 179: 5999–6008.

35. BonifaziP, ZelanteT, D'AngeloC, De LucaA, MorettiS, et al. (2009) Balancing inflammation and tolerance in vivo through dendritic cells by the commensal Candida albicans. Mucosal Immunol 2: 362–374.

36. WhibleyN, MaccallumDM, VickersMA, ZafreenS, WaldmannH, et al. (2014) Expansion of Foxp3(+) T-cell populations by Candida albicans enhances both Th17-cell responses and fungal dissemination after intravenous challenge. Eur J Immunol 44: 1069–1083.

37. ChenX, OppenheimJJ (2014) Th17 cells and Tregs: unlikely allies. J Leukoc Biol In press

38. BoymanO, SprentJ (2012) The role of interleukin-2 during homeostasis and activation of the immune system. Nat Rev Immunol 12: 180–190.

39. ChenY, HainesCJ, GutcherI, HochwellerK, BlumenscheinWM, et al. (2011) Foxp3(+) regulatory T cells promote T helper 17 cell development in vivo through regulation of interleukin-2. Immunity 34: 409–421.

40. ZhouL, ChongMM, LittmanDR (2009) Plasticity of CD4+ T cell lineage differentiation. Immunity 30: 646–655.

41. OsorioF, LeibundGut-LandmannS, LochnerM, LahlK, SparwasserT, et al. (2008) DC activated via dectin-1 convert Treg into IL-17 producers. Eur J Immunol 38: 3274–3281.

42. MilnerJD, HollandSM (2013) The cup runneth over: lessons from the ever-expanding pool of primary immunodeficiency diseases. Nat Rev Immunol 13: 635–648.

43. KekalainenE, TuovinenH, JoensuuJ, GyllingM, FranssilaR, et al. (2007) A defect of regulatory T cells in patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. J Immunol 178: 1208–1215.

44. SaitoM, NagasawaM, TakadaH, HaraT, TsuchiyaS, et al. (2011) Defective IL-10 signaling in hyper-IgE syndrome results in impaired generation of tolerogenic dendritic cells and induced regulatory T cells. J Exp Med 208: 235–249.

45. SharfeN, DadiHK, ShaharM, RoifmanCM (1997) Human immune disorder arising from mutation of the alpha chain of the interleukin-2 receptor. Proc Natl Acad Sci U S A 94: 3168–3171.

46. MacCallumDM, CastilloL, BrownAJ, GowNA, OddsFC (2009) Early-expressed chemokines predict kidney immunopathology in experimental disseminated Candida albicans infections. PLoS ONE 4: e6420.

47. ZelanteT, De LucaA, BonifaziP, MontagnoliC, BozzaS, et al. (2007) IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. Eur J Immunol 37: 2695–2706.

48. NeteaMG, SutmullerR, HermannC, Van der GraafCA, Van der MeerJW, et al. (2004) Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells. J Immunol 172: 3712–3718.

49. SmithPM, HowittMR, PanikovN, MichaudM, GalliniCA, et al. (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341: 569–573.

50. MucidaD, ParkY, KimG, TurovskayaO, ScottI, et al. (2007) Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317: 256–260.

51. FerwerdaB, FerwerdaG, PlantingaTS, WillmentJA, van SprielAB, et al. (2009) Human dectin-1 deficiency and mucocutaneous fungal infections. N Engl J Med 361: 1760–1767.

52. MaCS, ChewGY, SimpsonN, PriyadarshiA, WongM, et al. (2008) Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT3. J Exp Med 205: 1551–1557.

53. MilnerJD, BrenchleyJM, LaurenceA, FreemanAF, HillBJ, et al. (2008) Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452: 773–776.

54. MinegishiY, SaitoM, MorioT, WatanabeK, AgematsuK, et al. (2006) Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity 25: 745–755.

55. EngelhardtKR, McGheeS, WinklerS, SassiA, WoellnerC, et al. (2009) Large deletions and point mutations involving the dedicator of cytokinesis 8 (DOCK8) in the autosomal-recessive form of hyper-IgE syndrome. J Allergy Clin Immunol 124: 1289–1302.e1284.

56. LiuL, OkadaS, KongXF, KreinsAY, CypowyjS, et al. (2011) Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med 208: 1635–1648.

57. van de VeerdonkFL, PlantingaTS, HoischenA, SmeekensSP, JoostenLA, et al. (2011) STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis. N Engl J Med 365: 54–61.

58. de BeaucoudreyL, SamarinaA, BustamanteJ, CobatA, Boisson-DupuisS, et al. (2010) Revisiting human IL-12Rbeta1 deficiency: a survey of 141 patients from 30 countries. Medicine (Baltimore) 89: 381–402.

59. KisandK, Boe WolffAS, PodkrajsekKT, TserelL, LinkM, et al. (2010) Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J Exp Med 207: 299–308.

60. PuelA, DoffingerR, NatividadA, ChrabiehM, Barcenas-MoralesG, et al. (2010) Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J Exp Med 207: 291–297.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2014 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#