#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Differential PfEMP1 Expression Is Associated with Cerebral Malaria Pathology


One of the most severe forms of malarial disease is cerebral malaria, which disproportionally affects young children. In this disease, the parasite places proteins on the red blood cell surface, providing a “smokescreen” by which they evade host immunity and hide in organ blood vessels, blocking them and causing tissue damage. It is impossible to study parasites in the organs during life and autopsy studies on children with malaria are exceedingly rare. In Malawi, we examined parasites from the brain, heart and intestine of twenty cases of fatal malaria including controls with low numbers of malaria parasites but another identified cause of death. We found little difference in the category of proteins the parasites used in controls and cerebral malaria, although a small number of specific proteins were detected in multiple infections. In an alternative form of malaria in which the brain is heavily infected but shows no evidence of damage, we found a different set of proteins at high proportion. However, as these children were typically older and most were infected with HIV, we could not determine which of these factors was most important. Interactions between host and parasite have the potential to influence disease outcomes.


Vyšlo v časopise: Differential PfEMP1 Expression Is Associated with Cerebral Malaria Pathology. PLoS Pathog 10(12): e32767. doi:10.1371/journal.ppat.1004537
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004537

Souhrn

One of the most severe forms of malarial disease is cerebral malaria, which disproportionally affects young children. In this disease, the parasite places proteins on the red blood cell surface, providing a “smokescreen” by which they evade host immunity and hide in organ blood vessels, blocking them and causing tissue damage. It is impossible to study parasites in the organs during life and autopsy studies on children with malaria are exceedingly rare. In Malawi, we examined parasites from the brain, heart and intestine of twenty cases of fatal malaria including controls with low numbers of malaria parasites but another identified cause of death. We found little difference in the category of proteins the parasites used in controls and cerebral malaria, although a small number of specific proteins were detected in multiple infections. In an alternative form of malaria in which the brain is heavily infected but shows no evidence of damage, we found a different set of proteins at high proportion. However, as these children were typically older and most were infected with HIV, we could not determine which of these factors was most important. Interactions between host and parasite have the potential to influence disease outcomes.


Zdroje

1. EnderesC, KombilaD, Dal-BiancoM, DzikowskiR, KremsnerP, et al. (2011) Var Gene promoter activation in clonal Plasmodium falciparum isolates follows a hierarchy and suggests a conserved switching program that is independent of genetic background. J Infect Dis 204: 1620–1631.

2. ReckerM, BuckeeCO, SerazinA, KyesS, PinchesR, et al. (2011) Antigenic variation in Plasmodium falciparum malaria involves a highly structured switching pattern. PLoS Pathog 7: e1001306.

3. WarimweGM, ReckerM, KiraguEW, BuckeeCO, WambuaJ, et al. (2013) Plasmodium falciparum var Gene Expression Homogeneity as a Marker of the Host-Parasite Relationship under Different Levels of Naturally Acquired Immunity to Malaria. PLoS One 8: e70467.

4. DhariaNV, PlouffeD, BoppSE, Gonzalez-PaezGE, LucasC, et al. (2010) Genome scanning of Amazonian Plasmodium falciparum shows subtelomeric instability and clindamycin-resistant parasites. Genome Res 20: 1534–1544.

5. GardnerMJ, HallN, FungE, WhiteO, BerrimanM, et al. (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419: 498–511.

6. SmithJD, GamainB, BaruchDI, KyesS (2001) Decoding the language of var genes and Plasmodium falciparum sequestration. Trends Parasitol 17: 538–545.

7. VossTS, ThompsonJK, WaterkeynJ, FelgerI, WeissN, et al. (2000) Genomic distribution and functional characterisation of two distinct and conserved Plasmodium falciparum var gene 5' flanking sequences. Mol Biochem Parasitol 107: 103–115.

8. LavstsenT, TurnerL, SagutiF, MagistradoP, RaskTS, et al. (2012) Plasmodium falciparum erythrocyte membrane protein 1 domain cassettes 8 and 13 are associated with severe malaria in children. Proc Natl Acad Sci U S A 109: E1791–1800.

9. TurnerL, LavstsenT, BergerSS, WangCW, PetersenJE, et al. (2013) Severe malaria is associated with parasite binding to endothelial protein C receptor. Nature 498: 502–505.

10. AvrilM, BrazierAJ, MelcherM, SampathS, SmithJD (2013) DC8 and DC13 var Genes Associated with Severe Malaria Bind Avidly to Diverse Endothelial Cells. PLoS Pathog 9: e1003430.

11. Dorovini-ZisK, SchmidtK, HuynhH, FuW, WhittenRO, et al. (2011) The neuropathology of fatal cerebral malaria in malawian children. Am J Pathol 178: 2146–2158.

12. BengtssonA, JoergensenL, RaskTS, OlsenRW, AndersenMA, et al. (2013) A novel domain cassette identifies Plasmodium falciparum PfEMP1 proteins binding ICAM-1 and is a target of cross-reactive, adhesion-inhibitory antibodies. J Immunol 190: 240–249.

13. RobinsonBA, WelchTL, SmithJD (2003) Widespread functional specialization of Plasmodium falciparum erythrocyte membrane protein 1 family members to bind CD36 analysed across a parasite genome. Mol Microbiol 47: 1265–1278.

14. SmithJD, CraigAG, KriekN, Hudson-TaylorD, KyesS, et al. (2000) Identification of a Plasmodium falciparum intercellular adhesion molecule-1 binding domain: a parasite adhesion trait implicated in cerebral malaria. Proc Natl Acad Sci U S A 97: 1766–1771.

15. SalantiA, StaalsoeT, LavstsenT, JensenAT, SowaMP, et al. (2003) Selective upregulation of a single distinctly structured var gene in chondroitin sulphate A-adhering Plasmodium falciparum involved in pregnancy-associated malaria. Mol Microbiol 49: 179–191.

16. BruceMC, GalinskiMR, BarnwellJW, DonnellyCA, WalmsleyM, et al. (2000) Genetic diversity and dynamics of Plasmodium falciparum and P. vivax populations in multiply infected children with asymptomatic malaria infections in Papua New Guinea. Parasitology 121 (Pt 3): 257–272.

17. FalkN, KaestliM, QiW, OttM, BaeaK, et al. (2009) Analysis of Plasmodium falciparum var Genes Expressed in Children from Papua New Guinea. J Infect Dis 200: 347–56.

18. KaestliM, CortesA, LagogM, OttM, BeckHP (2004) Longitudinal assessment of Plasmodium falciparum var gene transcription in naturally infected asymptomatic children in Papua New Guinea. J Infect Dis 189: 1942–1951.

19. BullPC, BerrimanM, KyesS, QuailMA, HallN, et al. (2005) Plasmodium falciparum Variant Surface Antigen Expression Patterns during Malaria. PLoS Pathog 1: e26.

20. KaestliM, CockburnIA, CortesA, BaeaK, RoweJA, et al. (2006) Virulence of Malaria Is Associated with Differential Expression of Plasmodium falciparum var Gene Subgroups in a Case-Control Study. J Infect Dis 193: 1567–1574.

21. KyriacouHM, StoneGN, ChallisRJ, RazaA, LykeKE, et al. (2006) Differential var gene transcription in Plasmodium falciparum isolates from patients with cerebral malaria compared to hyperparasitaemia. Mol Biochem Parasitol 150: 211–218.

22. MugasaJ, QiW, RuschS, RottmannM, BeckHP (2012) Genetic diversity of expressed Plasmodium falciparum var genes from Tanzanian children with severe malaria. Malar J 11: 230.

23. RottmannM, LavstsenT, MugasaJP, KaestliM, JensenAT, et al. (2006) Differential expression of var gene groups is associated with morbidity caused by Plasmodium falciparum infection in Tanzanian children. Infect Immun 74: 3904–3911.

24. WarimweGM, KeaneTM, FeganG, MusyokiJN, NewtonCR, et al. (2009) Plasmodium falciparum var gene expression is modified by host immunity. Proc Natl Acad Sci U S A 106: 21801–21806.

25. WarimweGM, FeganG, MusyokiJN, NewtonCR, OpiyoM, et al. (2012) Prognostic indicators of life-threatening malaria are associated with distinct parasite variant antigen profiles. Sci Transl Med 4: 129ra145.

26. TaylorTE, FuWJ, CarrRA, WhittenRO, MuellerJS, et al. (2004) Differentiating the pathologies of cerebral malaria by postmortem parasite counts. Nat Med 10: 143–145.

27. MontgomeryJ, MphandeFA, BerrimanM, PainA, RogersonSJ, et al. (2007) Differential var gene expression in the organs of patients dying of falciparum malaria. Mol Microbiol 65: 959–967.

28. SnounouG, ZhuX, SiripoonN, JarraW, ThaithongS, et al. (1999) Biased distribution of msp1 and msp2 allelic variants in Plasmodium falciparum populations in Thailand. Trans R Soc Trop Med Hyg 93: 369–374.

29. DanielsR, VolkmanSK, MilnerDA, MaheshN, NeafseyDE, et al. (2008) A general SNP-based molecular barcode for Plasmodium falciparum identification and tracking. Malar J 7: 223.

30. MilnerDAJr, VaretaJ, ValimC, MontgomeryJ, DanielsRF, et al. (2012) Human cerebral malaria and Plasmodium falciparum genotypes in Malawi. Malar J 11: 35.

31. BruceMC, MachesoA, McConnachieA, MolyneuxME (2011) Comparative population structure of Plasmodium malariae and Plasmodium falciparum under different transmission settings in Malawi. Malar J 10: 38.

32. DemboEG, PhiriHT, MontgomeryJ, MolyneuxME, RogersonSJ (2006) Are Plasmodium falciparum parasites present in peripheral blood genetically the same as those sequestered in the tissues? Am J Trop Med Hyg 74: 730–732.

33. KraemerSM, KyesSA, AggarwalG, SpringerAL, NelsonSO, et al. (2007) Patterns of gene recombination shape var gene repertoires in Plasmodium falciparum: comparisons of geographically diverse isolates. BMC Genomics 8: 45.

34. ZhangQ, HuangY, ZhangY, FangX, ClaesA, et al. (2011) A critical role of perinuclear filamentous actin in spatial repositioning and mutually exclusive expression of virulence genes in malaria parasites. Cell Host Microbe 10: 451–463.

35. BachmannA, PredehlS, MayJ, HarderS, BurchardGD, et al. (2011) Highly co-ordinated var gene expression and switching in clinical Plasmodium falciparum isolates from non-immune malaria patients. Cell Microbiol 13: 1397–1409.

36. BarryAE, Leliwa-SytekA, TavulL, ImrieH, Migot-NabiasF, et al. (2007) Population genomics of the immune evasion (var) genes of Plasmodium falciparum. PLoS Pathog 3: e34.

37. FaikI, de CarvalhoEG, KunJF (2009) Parasite-host interaction in malaria: genetic clues and copy number variation. Genome Med 1: 82.

38. ChenDS, BarryAE, Leliwa-SytekA, SmithTA, PetersonI, et al. (2011) A Molecular Epidemiological Study of var Gene Diversity to Characterize the Reservoir of Plasmodium falciparum in Humans in Africa. PLoS ONE 6: e16629.

39. JensenAT, MagistradoP, SharpS, JoergensenL, LavstsenT, et al. (2004) Plasmodium falciparum associated with severe childhood malaria preferentially expresses PfEMP1 encoded by group A var genes. J Exp Med 199: 1179–1190.

40. KalmbachY, RottmannM, KombilaM, KremsnerPG, BeckHP, et al. (2010) Differential var gene expression in children with malaria and antidromic effects on host gene expression. J Infect Dis 202: 313–317.

41. KirchgatterK, del PortilloHA (2002) Association of severe noncerebral Plasmodium falciparum malaria in Brazil with expressed PfEMP1 DBL1 alpha sequences lacking cysteine residues. Mol Med 8: 16–23.

42. NormarkJ, NilssonD, RibackeU, WinterG, MollK, et al. (2007) PfEMP1-DBL1alpha amino acid motifs in severe disease states of Plasmodium falciparum malaria. Proc Natl Acad Sci U S A 104: 15835–15840.

43. BlomqvistK, NormarkJ, NilssonD, RibackeU, OrikirizaJ, et al. (2010) var gene transcription dynamics in Plasmodium falciparum patient isolates. Mol Biochem Parasitol 170: 74–83.

44. GattonML, PetersJM, GrestyK, FowlerEV, ChenN, et al. (2006) Detection Sensitivity and Quantitation of Plasmodium Falciparum Var Gene Transcripts by Real-Time Rt-Pcr in Comparison with Conventional Rt-Pcr. Am J Trop Med Hyg 75: 212–218.

45. Artzy-RandrupY, RorickMM, DayK, ChenD, DobsonAP, et al. (2012) Population structuring of multi-copy, antigen-encoding genes in Plasmodium falciparum. Elife 1: e00093.

46. GuptaS, SnowRW, DonnellyCA, MarshK, NewboldC (1999) Immunity to non-cerebral severe malaria is acquired after one or two infections. Nat Med 5: 340–343.

47. OleinikovAV, VoronkovaVV, FryeIT, AmosE, MorrisonR, et al. (2012) A plasma survey using 38 PfEMP1 domains reveals frequent recognition of the Plasmodium falciparum antigen VAR2CSA among young Tanzanian children. PLoS One 7: e31011.

48. ClaessensA, AdamsY, GhumraA, LindergardG, BuchanCC, et al. (2012) A subset of group A-like var genes encodes the malaria parasite ligands for binding to human brain endothelial cells. Proc Natl Acad Sci U S A 109: E1772–1781.

49. MoxonCA, WassmerSC, Milner JrDA, ChisalaNV, TaylorTE, et al. (2013) Loss of endothelial protein C receptors links coagulation and inflammation to parasite sequestration in cerebral malaria in African children. Blood 122: 842–851.

50. KyesS, PinchesR, NewboldC (2000) A simple RNA analysis method shows var and rif multigene family expression patterns in Plasmodium falciparum. Mol Biochem Parasitol 105: 311–315.

51. DuffyMF, BrownGV, BasukiW, KrejanyEO, NoviyantiR, et al. (2002) Transcription of multiple var genes by individual, trophozoite-stage Plasmodium falciparum cells expressing a chondroitin sulphate A binding phenotype. Mol Microbiol 43: 1285–1293.

52. BullPC, BuckeeCO, KyesS, KortokMM, ThathyV, et al. (2008) Plasmodium falciparum antigenic variation. Mapping mosaic var gene sequences onto a network of shared, highly polymorphic sequence blocks. Mol Microbiol 68: 1519–1534.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2014 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#