Extreme Divergence of Tropism for the Stem-Cell-Niche in the Testis
Microbes evolve to infect structures favoring their transmission in host populations. A large fraction of insects are infected with Wolbachia bacteria. Usually Wolbachia are transmitted the same way we inherit our mitochondria, via the eggs from the mother. In fruit flies, to favor maternal transmission, Wolbachia infect the microenvironment containing the egg producing stem cells, called the “stem cell niche”. Targeting of the stem cell niche is evolutionary conserved in female fruit flies, observed in all Wolbachia strains analyzed to date. Remarkably, in males, we find many Wolbachia strains not infecting the stem cell niche present in the testis. We report a surprising diversity in stem cell niche infection in males, contrasting with extreme conservation in females. We further show that even closely related Wolbachia strains in D. melanogaster display rapidly evolving patterns of stem cell niche targeting in males. Understanding the molecular mechanisms driving these differences will identify sex specific features of stem cell niche biology. Because Wolbachia promote insect resistance against human diseases transmitted by mosquitos, Wolbachia are becoming a valuable tool in the control of several diseases, including Dengue and malaria. Knowledge emerging from this research will also provide novel tools towards Wolbachia based strategies of disease control.
Vyšlo v časopise:
Extreme Divergence of Tropism for the Stem-Cell-Niche in the Testis. PLoS Pathog 10(12): e32767. doi:10.1371/journal.ppat.1004577
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004577
Souhrn
Microbes evolve to infect structures favoring their transmission in host populations. A large fraction of insects are infected with Wolbachia bacteria. Usually Wolbachia are transmitted the same way we inherit our mitochondria, via the eggs from the mother. In fruit flies, to favor maternal transmission, Wolbachia infect the microenvironment containing the egg producing stem cells, called the “stem cell niche”. Targeting of the stem cell niche is evolutionary conserved in female fruit flies, observed in all Wolbachia strains analyzed to date. Remarkably, in males, we find many Wolbachia strains not infecting the stem cell niche present in the testis. We report a surprising diversity in stem cell niche infection in males, contrasting with extreme conservation in females. We further show that even closely related Wolbachia strains in D. melanogaster display rapidly evolving patterns of stem cell niche targeting in males. Understanding the molecular mechanisms driving these differences will identify sex specific features of stem cell niche biology. Because Wolbachia promote insect resistance against human diseases transmitted by mosquitos, Wolbachia are becoming a valuable tool in the control of several diseases, including Dengue and malaria. Knowledge emerging from this research will also provide novel tools towards Wolbachia based strategies of disease control.
Zdroje
1. ChapmanT, ArnqvistG, BanghamJ, RoweL (2003) Sexual conflict. Trends in Ecology & Evolution 18: 41–47.
2. AvilaFW, SirotLK, LaFlammeBA, RubinsteinCD, WolfnerMF (2011) Insect seminal fluid proteins: identification and function. Annu Rev Entomol 56: 21–40.
3. BaldoL, AyoubNA, HayashiCY, RussellJA, StahlhutJK, et al. (2008) Insight into the routes of Wolbachia invasion: high levels of horizontal transfer in the spider genus Agelenopsis revealed by Wolbachia strain and mitochondrial DNA diversity. Molecular ecology 17: 557–569.
4. SchilthuizenM, StouthamerR (1997) Horizontal transmission of parthenogenesis-inducing microbes in Trichogramma wasps. Proc R Soc Lond B Biol Sci 264: 361–366.
5. WerrenJH (2011) Selfish genetic elements, genetic conflict, and evolutionary innovation. Proceedings of the National Academy of Sciences of the United States of America 108 Suppl 2: 10863–10870.
6. WerrenJH, BaldoL, ClarkME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6: 741–751.
7. FerreePM, Frydman, HM, LiJM, CaoJ, WieschausE, SullivanW (2005) Wolbachia Utilizes Host Microtubules and Dynein for Anterior Localization in the Drosophila Oocyte. PLoS Pathog 1: 111–124 (e114)..
8. HadfieldSJ, AxtonJM (1999) Germ cells colonized by endosymbiotic bacteria. Nature 402: 482.
9. SerbusLR, SullivanW (2007) A cellular basis for Wolbachia recruitment to the host germline. PLoS Pathog 3: e190.
10. VenetiZ, ClarkME, KarrTL, SavakisC, BourtzisK (2004) Heads or tails: host-parasite interactions in the Drosophila-Wolbachia system. Appl Environ Microbiol 70: 5366–5372.
11. BoyleL, OneillSL, RobertsonHM, KarrTL (1993) Interspecific and Intraspecific Horizontal Transfer of Wolbachia in Drosophila. Science 260: 1796–1799.
12. VavreF, FleuryF, LepetitD, FouilletP, BouletreauM (1999) Phylogenetic evidence for horizontal transmission of Wolbachia in host- parasitoid associations. Mol Biol Evol 16: 1711–1723.
13. FrydmanHM, LiJM, RobsonDN, WieschausE (2006) Somatic stem cell niche tropism in Wolbachia. Nature 441: 509–512.
14. ToomeyME, PanaramK, FastEM, BeattyC, FrydmanHM (2013) Evolutionarily conserved Wolbachia-encoded factors control pattern of stem-cell niche tropism in Drosophila ovaries and favor infection. Proc Natl Acad Sci U S A 110: 10788–10793.
15. HosokawaT, KogaR, KikuchiY, MengXY, FukatsuT (2010) Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc Natl Acad Sci U S A 107: 769–774.
16. SacchiL, GenchiM, ClementiE, NegriI, AlmaA, et al. (2010) Bacteriocyte-like cells harbour Wolbachia in the ovary of Drosophila melanogaster (Insecta, Diptera) and Zyginidia pullula (Insecta, Hemiptera). Tissue Cell 42: 328–333.
17. FastEM, ToomeyME, PanaramK, DesjardinsD, KolaczykED, et al. (2011) Wolbachia enhance Drosophila stem cell proliferation and target the germline stem cell niche. Science 334: 990–992.
18. HardyRW, TokuyasuKT, LindsleyDL, GaravitoM (1979) The germinal proliferation center in the testis of Drosophila melanogaster. J Ultrastruct Res 69: 180–190.
19. CharlatS, NirgianakiA, BourtzisK, MercotH (2002) Evolution of Wolbachia-induced cytoplasmic incompatibility in Drosophila simulans and D. sechellia. Evolution Int J Org Evolution 56: 1735–1742.
20. ZabalouS, CharlatS, NirgianakiA, LachaiseD, MercotH, et al. (2004) Natural Wolbachia infections in the Drosophila yakuba species complex do not induce cytoplasmic incompatibility but fully rescue the wRi modification. Genetics 167: 827–834.
21. van MeerMMM, WitteveldtJ, StouthamerR (1999) Phylogeny of the arthropod endosymbiont Wolbachia based on the wsp gene. Insect Molecular Biology 8: 399–408.
22. VenetiZ, ClarkME, ZabalouS, KarrTL, SavakisC, et al. (2003) Cytoplasmic incompatibility and sperm cyst infection in different Drosophila-Wolbachia associations. Genetics 164: 545–552.
23. BourtzisK, NirgianakiA, MarkakisG, SavakisC (1996) Wolbachia infection and cytoplasmic incompatibility in Drosophila species. Genetics 144: 1063–1073.
24. RichardsonMF, WeinertLA, WelchJJ, LinheiroRS, MagwireMM, et al. (2012) Population genomics of the Wolbachia endosymbiont in Drosophila melanogaster. PLoS Genet 8: e1003129.
25. ChrostekE, MarialvaMS, EstevesSS, WeinertLA, MartinezJ, et al. (2013) Wolbachia variants induce differential protection to viruses in Drosophila melanogaster: a phenotypic and phylogenomic analysis. PLoS Genet 9: e1003896.
26. LandmannF, BainO, MartinC, UniS, TaylorMJ, et al. (2012) Both asymmetric mitotic segregation and cell-to-cell invasion are required for stable germline transmission of Wolbachia in filarial nematodes. Biol Open 1: 536–547.
27. DecottoE, SpradlingAC (2005) The Drosophila ovarian and testis stem cell niches: similar somatic stem cells and signals. Dev Cell 9: 501–510.
28. GilboaL, LehmannR (2004) How different is Venus from Mars? The genetics of germ-line stem cells in Drosophila females and males. Development 131: 4895–4905.
29. WerrenJH (1997) Biology of Wolbachia. Annu Rev Entomol 42: 587–609.
30. TramU, SullivanW (2002) Role of delayed nuclear envelope breakdown and mitosis in Wolbachia-induced cytoplasmic incompatibility. Science 296: 1124–1126.
31. PintoSB, StaintonK, HarrisS, KambrisZ, SuttonER, et al. (2013) Transcriptional regulation of Culex pipiens mosquitoes by Wolbachia influences cytoplasmic incompatibility. PLoS Pathog 9: e1003647.
32. O'NeillSL, KarrTL (1990) Bidirectional incompatibility between conspecific populations of Drosophila simulans. Nature 348: 178–180.
33. BreeuwerJA, WerrenJH (1990) Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature 346: 558–560.
34. BrennanLJ, HaukedalJA, EarleJC, KeddieB, HarrisHL (2012) Disruption of redox homeostasis leads to oxidative DNA damage in spermatocytes of Wolbachia-infected Drosophila simulans. Insect Mol Biol 21: 510–520.
35. RiparbelliMG, GiordanoR, CallainiG (2007) Effects of Wolbachia on sperm maturation and architecture in Drosophila simulans Riverside. Mech Dev 124: 699–714.
36. CherryCM, MatunisEL (2010) Epigenetic regulation of stem cell maintenance in the Drosophila testis via the nucleosome-remodeling factor NURF. Cell Stem Cell 6: 557–567.
37. HaertyW, JagadeeshanS, KulathinalRJ, WongA, Ravi RamK, et al. (2007) Evolution in the fast lane: rapidly evolving sex-related genes in Drosophila. Genetics 177: 1321–1335.
38. Bauer DuMontVL, FloresHA, WrightMH, AquadroCF (2007) Recurrent positive selection at bgcn, a key determinant of germ line differentiation, does not appear to be driven by simple coevolution with its partner protein bam. Mol Biol Evol 24: 182–191.
39. BaldoL, BordensteinS, WernegreenJJ, WerrenJH (2006) Widespread recombination throughout Wolbachia genomes. Mol Biol Evol 23: 437–449.
40. KlassonL, WestbergJ, SapountzisP, NaslundK, LutnaesY, et al. (2009) The mosaic genome structure of the Wolbachia wRi strain infecting Drosophila simulans. Proceedings of the National Academy of Sciences of the United States of America 106: 5725–5730.
41. BaldoL, DesjardinsCA, RussellJA, StahlhutJK, WerrenJH (2010) Accelerated microevolution in an outer membrane protein (OMP) of the intracellular bacteria Wolbachia. BMC Evol Biol 10: 48.
42. SioziosS, IoannidisP, KlassonL, AnderssonSG, BraigHR, et al. (2013) The diversity and evolution of Wolbachia ankyrin repeat domain genes. PLoS One 8: e55390.
43. ChoiJY, AquadroCF (2014) The coevolutionary period of Wolbachia pipientis infecting Drosophila ananassae and its impact on the evolution of the host germline stem cell regulating genes. Mol Biol Evol 31: 2457–2471.
44. RieglerM, SidhuM, MillerWJ, O'NeillSL (2005) Evidence for a global Wolbachia replacement in Drosophila melanogaster. Curr Biol 15: 1428–1433.
45. IlinskyY (2013) Coevolution of Drosophila melanogaster mtDNA and Wolbachia genotypes. PLoS One 8: e54373.
46. JigginsFM, HurstGD, YangZ (2002) Host-symbiont conflicts: positive selection on an outer membrane protein of parasitic but not mutualistic Rickettsiaceae. Mol Biol Evol 19: 1341–1349.
47. BrownlieJC, AdamskiM, SlatkoB, McGrawEA (2007) Diversifying selection and host adaptation in two endosymbiont genomes. BMC Evol Biol 7: 68.
48. MoranNA, McCutcheonJP, NakabachiA (2008) Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42: 165–190.
49. WoolfitM, Iturbe-OrmaetxeI, BrownlieJC, WalkerT, RieglerM, et al. (2013) Genomic evolution of the pathogenic Wolbachia strain, wMelPop. Genome Biol Evol 5: 2189–2204.
50. AmlouM, MoreteauB, DavidJR (1998) Genetic analysis of Drosophila sechellia specialization: oviposition behavior toward the major aliphatic acids of its host plant. Behavior genetics 28: 455–464.
51. Maddison WP, Maddison DR (2005) MacClade; Analysis of phylogeny and character evolution. 4.08a ed. Sunderland, Massachussettz: Sinauer Associates. Pp.
52. ParaskevopoulosC, BordensteinSR, WernegreenJJ, WerrenJH, BourtzisK (2006) Toward a Wolbachia multilocus sequence typing system: discrimination of Wolbachia strains present in Drosophila species. Curr Microbiol 53: 388–395.
53. Maddison WP, Maddison DR (2005) MacClade: Analysis of phylogeny and character evolution. 4.08a ed. Sunderland, Massachusetts: Sinauer Associates.
54. JeffsPS, HolmesEC, AshburnerM (1994) The molecular evolution of the alcohol dehydrogenase and alcohol dehydrogenase-related genes in the Drosophila melanogaster species subgroup. Mol Biol Evol 11: 287–304.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 12
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Plasma Membrane-Located Purine Nucleotide Transport Proteins Are Key Components for Host Exploitation by Microsporidian Intracellular Parasites
- Emergence of MERS-CoV in the Middle East: Origins, Transmission, Treatment, and Perspectives
- Experimental Cerebral Malaria Pathogenesis—Hemodynamics at the Blood Brain Barrier
- Unique Features of HIV-1 Spread through T Cell Virological Synapses