#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Group B Streptococcal Infection of the Choriodecidua Induces Dysfunction of the Cytokeratin Network in Amniotic Epithelium: A Pathway to Membrane Weakening


Group B Streptococcus (GBS) is one cause of preterm birth, stillbirth, and fetal brain injury. GBS is present in the vagina and is thought to ascend into the uterus of some women where it can cause placental inflammation and preterm birth. Understanding the earliest events in the placenta that lead to preterm birth is elusive in humans, because the placenta cannot be studied until after birth. Here, we use a nonhuman primate model to show that an early GBS infection can damage the structural support of the fetal membranes, specifically the cytokeratin network in the epithelium of the amnion (one part of the membranes). Next, we obtained human placentas to show that this cytokeratin network was also damaged in human patients that had preterm premature rupture of the membranes, a major cause of preterm birth. Our work is important in understanding why fetal membranes may rupture prematurely, which may lead to early interventions to prevent membrane damage after placental infection and preterm birth.


Vyšlo v časopise: Group B Streptococcal Infection of the Choriodecidua Induces Dysfunction of the Cytokeratin Network in Amniotic Epithelium: A Pathway to Membrane Weakening. PLoS Pathog 10(3): e32767. doi:10.1371/journal.ppat.1003920
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1003920

Souhrn

Group B Streptococcus (GBS) is one cause of preterm birth, stillbirth, and fetal brain injury. GBS is present in the vagina and is thought to ascend into the uterus of some women where it can cause placental inflammation and preterm birth. Understanding the earliest events in the placenta that lead to preterm birth is elusive in humans, because the placenta cannot be studied until after birth. Here, we use a nonhuman primate model to show that an early GBS infection can damage the structural support of the fetal membranes, specifically the cytokeratin network in the epithelium of the amnion (one part of the membranes). Next, we obtained human placentas to show that this cytokeratin network was also damaged in human patients that had preterm premature rupture of the membranes, a major cause of preterm birth. Our work is important in understanding why fetal membranes may rupture prematurely, which may lead to early interventions to prevent membrane damage after placental infection and preterm birth.


Zdroje

1. GoldenbergRL, CulhaneJF, IamsJD, RomeroR (2008) Epidemiology and causes of preterm birth. Lancet 371: 75–84.

2. RomeroR, CeskaM, AvilaC, MazorM, BehnkeE, et al. (1991) Neutrophil attractant/activating peptide-1/interleukin-8 in term and preterm parturition. Am J Obstet Gynecol 165: 813–820.

3. HillierSL, WitkinSS, KrohnMA, WattsDH, KiviatNB, et al. (1993) The relationship of amniotic fluid cytokines and preterm delivery, amniotic fluid infection, histologic chorioamnionitis, and chorioamnion infection. Obstet Gynecol 81: 941–948.

4. GoldenbergRL, HauthJC, AndrewsWW (2000) Intrauterine infection and preterm delivery. N Engl J Med 342: 1500–1507.

5. GravettMG, WitkinSS, HaluskaGJ, EdwardsJL, CookMJ, et al. (1994) An experimental model for intraamniotic infection and preterm labor in rhesus monkeys. Am J Obstet Gynecol 171: 1660–1667.

6. ElovitzMA, MrinaliniC (2004) Animal models of preterm birth. Trends Endocrinol Metab 15: 479–487.

7. KumarD, FungW, MooreRM, PandeyV, FoxJ, et al. (2006) Proinflammatory cytokines found in amniotic fluid induce collagen remodeling, apoptosis, and biophysical weakening of cultured human fetal membranes. Biol Reprod 74: 29–34.

8. MercerBM, LewisR (1997) Preterm labor and preterm premature rupture of the membranes. Diagnosis and management. Infectious disease clinics of North America 11: 177–201.

9. WatersTP, MercerB (2011) Preterm PROM: prediction, prevention, principles. Clin Obstet Gynecol 54: 307–312.

10. ParryS, StraussJF3rd (1998) Premature rupture of the fetal membranes. N Engl J Med 338: 663–670.

11. StraussJF3rd (2012) Extracellular Matrix Dynamics and Fetal Membrane Rupture. Reprod Sci

12. MenonR, FortunatoSJ (2004) The role of matrix degrading enzymes and apoptosis in rupture of membranes. J Soc Gynecol Investig 11: 427–437.

13. FortunatoSJ, MenonR, BryantC, LombardiSJ (2000) Programmed cell death (apoptosis) as a possible pathway to metalloproteinase activation and fetal membrane degradation in premature rupture of membranes. Am J Obstet Gynecol 182: 1468–1476.

14. LonginiM, PerroneS, VezzosiP, MarzocchiB, KenanidisA, et al. (2007) Association between oxidative stress in pregnancy and preterm premature rupture of membranes. Clin Biochem 40: 793–797.

15. Vadillo-OrtegaF, SadowskyDW, HaluskaGJ, Hernandez-GuerreroC, Guevara-SilvaR, et al. (2002) Identification of matrix metalloproteinase-9 in amniotic fluid and amniochorion in spontaneous labor and after experimental intrauterine infection or interleukin-1 beta infusion in pregnant rhesus monkeys. Am J Obstet Gynecol 186: 128–138.

16. CanzoneriBJ, FengL, GrotegutCA, BentleyRC, HeineRP, et al. (2013) The Chorion Layer of Fetal Membranes Is Prematurely Destroyed in Women With Preterm Premature Rupture of the Membranes. Reprod Sci 20 (10) 1246–54.

17. OyenML, CalvinSE, LandersDV (2006) Premature rupture of the fetal membranes: is the amnion the major determinant? Am J Obstet Gynecol 195: 510–515.

18. Adams WaldorfKM, RubensCE, GravettMG (2011) Use of nonhuman primate models to investigate mechanisms of infection-associated preterm birth. BJOG 118: 136–144.

19. LarsenJW, SeverJL (2008) Group B Streptococcus and pregnancy: a review. Am J Obstet Gynecol 198: 440–448 discussion 448–450.

20. Adams WaldorfKM, GravettMG, McAdamsRM, PaolellaLJ, GoughGM, et al. (2011) Choriodecidual Group B Streptococcal Inoculation Induces Fetal Lung Injury without Intra-Amniotic Infection and Preterm Labor in Macaca nemestrina. PLoS One 6: e28972.

21. EfronB, TibshiraniR (2007) On testing the significance of sets of genes. Ann App Stat 1: 107–129.

22. MalakTM, BellSC (1994) Structural characteristics of term human fetal membranes: a novel zone of extreme morphological alteration within the rupture site. Br J Obstet Gynaecol 101: 375–386.

23. El KhwadM, PandeyV, StetzerB, MercerBM, KumarD, et al. (2006) Fetal membranes from term vaginal deliveries have a zone of weakness exhibiting characteristics of apoptosis and remodeling. J Soc Gynecol Investig 13: 191–195.

24. Gomez-LopezN, Vadillo-PerezL, Hernandez-CarbajalA, Godines-EnriquezM, OlsonDM, et al. (2011) Specific inflammatory microenvironments in the zones of the fetal membranes at term delivery. Am J Obstet Gynecol 205: 235 e215–224.

25. AssadianS, El-AssaadW, WangXQ, GannonPO, BarresV, et al. (2012) p53 inhibits angiogenesis by inducing the production of Arresten. Cancer research 72: 1270–1279.

26. MukhopadhyayT, RothJA (1996) p53 involvement in activation of the cytokeratin 8 gene in tumor cell lines. Anticancer research 16: 105–112.

27. AhenkorahJ, HottorB, ByrneS, BosioP, OcklefordCD (2009) Immunofluorescence confocal laser scanning microscopy and immuno-electron microscopic identification of keratins in human materno-foetal interaction zone. J Cell Mol Med 13: 735–748.

28. BehamA, DenkH, DesoyeG (1988) The distribution of intermediate filament proteins, actin and desmoplakins in human placental tissue as revealed by polyclonal and monoclonal antibodies. Placenta 9: 479–492.

29. RogelMR, JaitovichA, RidgeKM (2010) The role of the ubiquitin proteasome pathway in keratin intermediate filament protein degradation. Proc Am Thorac Soc 7: 71–76.

30. WindofferR, WollS, StrnadP, LeubeRE (2004) Identification of novel principles of keratin filament network turnover in living cells. Mol Biol Cell 15: 2436–2448.

31. SawamuraD, NakanoH, MatsuzakiY (2010) Overview of epidermolysis bullosa. J Dermatol 37: 214–219.

32. ShenZY, LiEM, LuSQ, ShenJ, CaiYM, et al. (2008) Autophagic and apoptotic cell death in amniotic epithelial cells. Placenta 29: 956–961.

33. LeiH, FurthEE, KalluriR, ChiouT, TillyKI, et al. (1996) A program of cell death and extracellular matrix degradation is activated in the amnion before the onset of labor. The Journal of clinical investigation 98: 1971–1978.

34. TamuraGS, NittayajarnA (2000) Group B streptococci and other gram-positive cocci bind to cytokeratin 8. Infect Immun 68: 2129–2134.

35. Schwarz-LinekU, HookM, PottsJR (2004) The molecular basis of fibronectin-mediated bacterial adherence to host cells. Mol Microbiol 52: 631–641.

36. SorianiM, SantiI, TaddeiA, RappuoliR, GrandiG, et al. (2006) Group B Streptococcus crosses human epithelial cells by a paracellular route. J Infect Dis 193: 241–250.

37. Hernandez-QuinteroM, Kuri-HarcuchW, Gonzalez RoblesA, Castro-MunozledoF (2006) Interleukin-6 promotes human epidermal keratinocyte proliferation and keratin cytoskeleton reorganization in culture. Cell Tissue Res 325: 77–90.

38. WindofferR, BeilM, MaginTM, LeubeRE (2011) Cytoskeleton in motion: the dynamics of keratin intermediate filaments in epithelia. J Cell Biol 194: 669–678.

39. KolschA, WindofferR, WurflingerT, AachT, LeubeRE (2010) The keratin-filament cycle of assembly and disassembly. J Cell Sci 123: 2266–2272.

40. KuNO, OmaryMB (2000) Keratins turn over by ubiquitination in a phosphorylation-modulated fashion. J Cell Biol 149: 547–552.

41. WoodsJRJr (2001) Reactive oxygen species and preterm premature rupture of membranes-a review. Placenta 22 Suppl A: S38–44.

42. TanirHM, SenerT, ArtanS, KaytazB, Sahin-MutluF, et al. (2005) Programmed cell death (apoptosis) in placentas from normal pregnancy and pregnancy complicated by term (t) and preterm (p) premature rupture of membranes (PROM). Arch Gynecol Obstet 273: 98–103.

43. KataokaS, FurutaI, YamadaH, KatoEH, EbinaY, et al. (2002) Increased apoptosis of human fetal membranes in rupture of the membranes and chorioamnionitis. Placenta 23: 224–231.

44. ZimmermanEF, PotturiRB, ResnickE, FisherJE (1994) Role of oxygen free radicals in cocaine-induced vascular disruption in mice. Teratology 49: 192–201.

45. WilliamsMA, MittendorfR, StubblefieldPG, LiebermanE, SchoenbaumSC, et al. (1992) Cigarettes, coffee, and preterm premature rupture of the membranes. Am J Epidemiol 135: 895–903.

46. MenonR, FortunatoSJ, YuJ, MilneGL, SanchezS, et al. (2011) Cigarette smoke induces oxidative stress and apoptosis in normal term fetal membranes. Placenta 32: 317–322.

47. FettucciariK, FetriconiI, MannucciR, NicolettiI, BartoliA, et al. (2006) Group B Streptococcus induces macrophage apoptosis by calpain activation. J Immunol 176: 7542–7556.

48. UlettGC, AddersonEE (2005) Nitric oxide is a key determinant of group B streptococcus-induced murine macrophage apoptosis. J Infect Dis 191: 1761–1770.

49. UlettGC, MacleanKH, NekkalapuS, ClevelandJL, AddersonEE (2005) Mechanisms of group B streptococcal-induced apoptosis of murine macrophages. J Immunol 175: 2555–2562.

50. OliveiraL, MadureiraP, AndradeEB, BouaboudA, MorelloE, et al. (2012) Group B streptococcus GAPDH is released upon cell lysis, associates with bacterial surface, and induces apoptosis in murine macrophages. PLoS One 7: e29963.

51. OshimaRG (2002) Apoptosis and keratin intermediate filaments. Cell death and differentiation 9: 486–492.

52. KuB, LiangC, JungJU, OhBH (2011) Evidence that inhibition of BAX activation by BCL-2 involves its tight and preferential interaction with the BH3 domain of BAX. Cell Res 21: 627–641.

53. DkhissiF, RaynalS, JullienP, LawrenceDA (1999) Growth stimulation of murine fibroblasts by TGF-beta1 depends on the expression of a functional p53 protein. Oncogene 18: 703–711.

54. GorelikL, FlavellRA (2000) Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 12: 171–181.

55. RahimiN, TremblayE, McAdamL, RobertsA, ElliottB (1998) Autocrine secretion of TGF-beta 1 and TGF-beta 2 by pre-adipocytes and adipocytes: a potent negative regulator of adipocyte differentiation and proliferation of mammary carcinoma cells. In vitro cellular & developmental biology Animal 34: 412–420.

56. LiY, TianD (2013) Correlation between apoptosis and TGF-beta1 expression in the mucosal epithelium of rat small intestine in a cold stress state. Experimental and therapeutic medicine 5: 1456–1460.

57. HirotaY, DaikokuT, TranguchS, XieH, BradshawHB, et al. (2010) Uterine-specific p53 deficiency confers premature uterine senescence and promotes preterm birth in mice. The Journal of clinical investigation 120: 803–815.

58. BasuA, HaldarS (1998) The relationship between BcI2, Bax and p53: consequences for cell cycle progression and cell death. Mol Hum Reprod 4: 1099–1109.

59. RomeroR, YoonBH, MazorM, GomezR, DiamondMP, et al. (1993) The diagnostic and prognostic value of amniotic fluid white blood cell count, glucose, interleukin-6, and gram stain in patients with preterm labor and intact membranes. Am J Obstet Gynecol 169: 805–816.

60. DiGiulioDB, RomeroR, AmoganHP, KusanovicJP, BikEM, et al. (2008) Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation. PLoS One 3: e3056.

61. HittiJ, RileyDE, KrohnMA, HillierSL, AgnewKJ, et al. (1997) Broad-spectrum bacterial rDNA polymerase chain reaction assay for detecting amniotic fluid infection among women in premature labor. Clin Infect Dis 24: 1228–1232.

62. MenonR, PeltierMR, EckardtJ, FortunatoSJ (2009) Diversity in cytokine response to bacteria associated with preterm birth by fetal membranes. Am J Obstet Gynecol 201: 306 e301–306.

63. MartinTR, RubensCE, WilsonCB (1988) Lung antibacterial defense mechanisms in infant and adult rats: implications for the pathogenesis of group B streptococcal infections in the neonatal lung. J Infect Dis 157: 91–100.

64. MusserJM, MattinglySJ, QuentinR, GoudeauA, SelanderRK (1989) Identification of a high-virulence clone of type III Streptococcus agalactiae (group B Streptococcus) causing invasive neonatal disease. Proc Natl Acad Sci U S A 86: 4731–4735.

65. TaziA, DissonO, BellaisS, BouaboudA, DmytrukN, et al. (2010) The surface protein HvgA mediates group B streptococcus hypervirulence and meningeal tropism in neonates. J Exp Med 207: 2313–2322.

66. WhidbeyC, HarrellMI, BurnsideK, NgoL, BecraftAK, et al. (2013) A hemolytic pigment of Group B Streptococcus allows bacterial penetration of human placenta. The Journal of experimental medicine 210: 1265–1281.

67. PritzlaffCA, ChangJC, KuoSP, TamuraGS, RubensCE, et al. (2001) Genetic basis for the beta-haemolytic/cytolytic activity of group B Streptococcus. Mol Microbiol 39: 236–247.

68. McAdamsRM, VanderhoevenJ, BeyerRP, BammlerTK, FarinFM, et al. (2012) Choriodecidual infection downregulates angiogenesis and morphogenesis pathways in fetal lungs from macaca nemestrina. PLoS One 7: e46863.

69. Adams WaldorfKM, PersingD, NovyMJ, SadowskyDW, GravettMG (2008) Pretreatment with toll-like receptor 4 antagonist inhibits lipopolysaccharide-induced preterm uterine contractility, cytokines, and prostaglandins in rhesus monkeys. Reprod Sci 15: 121–127.

70. ChangJ, JainS, CarlDJ, PaolellaL, DarveauRP, et al. (2010) Differential host response to LPS variants in amniochorion and the TLR4/MD-2 system in Macaca nemestrina. Placenta 31: 811–817.

71. GentlemanRC, CareyVJ, BatesDM, BolstadB, DettlingM, et al. (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5: R80.

72. ZhijinW, IrizarryRA, GentlemanR, FMM, SpencerF (2004) A model based background adjustment for oligonucleotide expression arrays. J Am Stat Assoc 99: 909–917.

73. SmythGK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3: Article3.

74. Gentleman R, Carey V, Huber W, Irizarry R, S D, Eds. (2005) Bioinformatics and computational biology solutions using R and Bioconductor. New York; London: Springer.

75. SubramanianA, TamayoP, MoothaVK, MukherjeeS, EbertBL, et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102: 15545–15550.

76. CamonE, MagraneM, BarrellD, LeeV, DimmerE, et al. (2004) The Gene Ontology Annotation (GOA) Database: sharing knowledge in Uniprot with Gene Ontology. Nucleic Acids Res 32: D262–266.

77. DiazD, KrejsaCM, WhiteCC, KeenerCL, FarinFM, et al. (2001) Tissue specific changes in the expression of glutamate-cysteine ligase mRNAs in mice exposed to methylmercury. Toxicol Lett 122: 119–129.

78. LinYS, DowlingAL, QuigleySD, FarinFM, ZhangJ, et al. (2002) Co-regulation of CYP3A4 and CYP3A5 and contribution to hepatic and intestinal midazolam metabolism. Mol Pharmacol 62: 162–172.

79. KevilCG, PruittH, KavanaghTJ, WilkersonJ, FarinF, et al. (2004) Regulation of endothelial glutathione by ICAM-1: implications for inflammation. Faseb J 18: 1321–1323.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2014 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#